Math, asked by AnayPatil, 7 months ago

Please solve this for me​

Attachments:

Answers

Answered by Atαrαh
5

Answer:

  • The angle between AP and the rectangular base ABCD is 16.67 degrees

Step-by-step explanation:

Let us find AC first by using the Pythagoras theorem,

In right angled triangle ABC ,

\rightarrow\mathtt{AC^{2} =AB^{2} +BC^{2} }

\rightarrow\mathtt{AC^{2} =(12)^{2} +(6)^{2} }

\rightarrow\mathtt{AC^{2} =144+36 }

\rightarrow\mathtt{AC =\sqrt{180}  }

\rightarrow\mathtt{AC =13.4 cm  }

______________________

Now that we have the value of AC let us find the value of AP again by using Pythagoras theorem,

In right angled triangle ACP ,

\rightarrow\mathtt{AP^{2} =AC^{2} +CP^{2} }

\rightarrow\mathtt{AC^{2} =(13.4)^{2} +(4)^{2} }

\rightarrow\mathtt{AC^{2} =179.56+16 }

\rightarrow\mathtt{AC^{2} =195.56 }

\rightarrow\mathtt{AC =13.9 cm  }

_______________________

we know that ,

\rightarrow\mathtt{sin\: \theta =\dfrac{PC}{AP}}

\rightarrow\mathtt{sin\: \theta =\dfrac{4}{13.9}}

\rightarrow\mathtt{sin\: \theta =0.287}

\rightarrow\mathtt{ \theta =sin (0.287)^{-1}}

\rightarrow\mathtt{ \theta =16.67}

Answered by tejas9193
19

Answer:

The angle between AP and the rectangular base ABCD is 16.67 degrees

Step-by-step explanation:

Let us find AC first by using the Pythagoras theorem,

In right angled triangle ABC ,

\rightarrow\mathtt{AC^{2} =AB^{2} +BC^{2} }

\rightarrow\mathtt{AC^{2} =(12)^{2} +(6)^{2} }

\rightarrow\mathtt{AC^{2} =144+36 }

\rightarrow\mathtt{AC =\sqrt{180}  }

\rightarrow\mathtt{AC =13.4 cm  }

______________________

Now that we have the value of AC let us find the value of AP again by using Pythagoras theorem,

In right angled triangle ACP ,

\rightarrow\mathtt{AP^{2} =AC^{2} +CP^{2} }

\rightarrow\mathtt{AC^{2} =(13.4)^{2} +(4)^{2} }

\rightarrow\mathtt{AC^{2} =179.56+16 }

\rightarrow\mathtt{AC^{2} =195.56 }

\rightarrow\mathtt{AC =13.9 cm  }

_______________________

we know that ,

\rightarrow\mathtt{sin\: \theta =\dfrac{PC}{AP}}

\rightarrow\mathtt{sin\: \theta =\dfrac{4}{13.9}}

\rightarrow\mathtt{sin\: \theta =0.287}

\rightarrow\mathtt{ \theta =sin (0.287)^{-1}}

\rightarrow\mathtt{ \theta =16.67}

Similar questions