Please solve this guys
Answers
Step-by-step explanation:
maybe this will help you.
Question
If cot α .cot β = 3, show that [cos (α - β)/ cos (α + β) ] = 2.
Solution
Given:-
- cot α .cot β = 3 ......(1)
To prove:-
- [cos (α - β)/ cos (α + β) ] = 2. .....(2)
Explanation
we know,
★ cos(α - β) = cos α .cosβ + sin α .sin β
★ cos(α + β) = cos α .cosβ - sin α .sin β
Take L.H.S. of equ(2)
➠ [cos (α - β)/ cos (α + β) ]
keep values by equation (1),
➠ [cos α .cosβ + sin α .sin β]/[cos α .cosβ - sin α .sin β]
divided by sin α.sin β numerator and denominator
First take numerator ,
➠ [cos α .cosβ + sin α .sin β]/[sin α.sin β]
➠ (cos α .cosβ)/(sin α.sin β) + (sin α .sin β)/(sin α.sin β)
➠ cot α .cot β + 1
Second take denominator ,
➠ (cos α .cosβ - sin α .sin β)/(sin α .sin β)
➠ (cos α .cosβ)/(sin α .sin β) - (sin α .sin β)/(sin α .sin β)
➠ cot α .cot β - 1
So,
➠ (cot α .cot β + 1)/(cot α .cot β - 1)
Keep value by equ(1)
➠ (3+1)/(3-1)
➠ 4/2
➠ 2
= R.H.S.
That's proved.
Some important formula
★ cos x / sin x = cot x
★ sin x / cos x = sin x