Math, asked by Ghostman007, 7 months ago

Please Solve this ! !!! I am giving many points for this question , Please Please solve this​

Attachments:

Answers

Answered by Anonymous
6

\bf\large\red{\underline{given :  }} \\

  • Angle PRQ = 60°
  • PS = 20m
  • △PQS is right angled at Q.
  • PR = PS.

\bf\large\red{\underline{ to \: find : }} \\

  • PQ = ?

\bf\large\red{\underline{properties \: used :  }} \\

  • Angle sum property :- sum of all angles in a triangle is 180°.
  • Tregonometric theorems.
  • Linear pair.
  • Angle opposite to equal side is equal.

\bf\large\red{\underline{ solution : }} \\

Angle PRQ and Angle PRS are supplementary.

∴ Angle PRQ + Angle PRS = 180° (linear pairs)

➜ 60 + Angle PRS = 180°

Angle PRS = 120° ----------(1)

In△PRS,

∵ PR = RS .

So, Angle RPS = Angle RSP. --------(2)

Angle RPS + Angle PRS + AngleRSP = 180°

(by angle sum property)

➜ 2 Angle PSR+ 120° = 180°

➜ 2 Angle PSR = 60°

Angle PSR = 30° -------(3)

Angle PSR = Angle PSQ = 30°

(same angle of different triangle)

In△PQS ,

sin PSQ = opposite/hypotenuse

sin PSQ = PQ/PS.

\sf\large\red{\underline{ }}sin30 =  \frac{pq}{20}  \\  \\  \frac{1}{2} =  \frac{pq}{20}   \\  \\

∴ PQ = 10 m

 \\ \bf\red{\underline{ }}some \: trigonometric \: identities \\

  • sin Θ = oposite / hypotenuse
  • cosΘ = adjecent / hypotenuse
  • tanΘ = opposite/adjecent
  • secΘ = hypotenuse / adjecent
  • cosecΘ = hypotenuse / opposite
  • cotΘ= adjecent / opposite

Attachments:
Similar questions