Math, asked by jrawat2005, 10 months ago

please solve this
I will mark you as BRAINLIEST​

Attachments:

Answers

Answered by Anonymous
1

Please mark me in the brainlist ✌️✌️✌️✌️✌️✌️

Please see the attachment below

Attachments:
Answered by ItzAditt007
0

AnswEr:-

  • 41. (Que 6)

  • 58. (Que 7).

ExplanaTion:-

Given:-

  • 1. (a-b) = 5 and ab = 16.

  • 2. (a+b+c) = 9 and ab+bc+ac = 23.

To Find:-

  • 1. a² + b².

  • 2. a² + b² + c².

IDs Used:-

 \\ \tt\longrightarrow (x +y) {}^{2}  =  {x}^{2}  +  {y}^{2}  -  2xy. \\  \\ \tt\longrightarrow( x - y) ^{2}   + 2xy = ( {x}^{2}  +  {y}^{2}   -  2xy) + 2xy. \\  \\ \tt\longrightarrow(x - y) {}^{2}  + 2xy =  {x}^{2}  \:  +   \: {y}^{2} \: \cancel{ - 2xy} \:  \cancel{ + 2xy}. \\  \\  \hookrightarrow \boxed{ \boxed{ \bf (x - y) {}^{2}  + 2xy =  {x}^{2} +  {y}^{2} .  }}_{...  \bf  \: id(1).} \\

And,

 \\ \tt\longrightarrow(x + y + z) {}^{2}  =  {x}^{2} +  {y}^{2} + z {}^{2}  + xy + yz + zx. \\  \\   \tt\longrightarrow(x + y + z) {}^{2} - (xy + yz + zx) =  {x}^{2}   +  {y}^{2}  + z {}^{2}    \: \cancel {+( xy + yz + zx)}  \: \cancel{ - (xy + yz + zx)}. \\  \\  \hookrightarrow \boxed{ \boxed{ \bf(x + y + z) {}^{2}  - (xy + yz + zx) =  {x}^{2}  + {y}^{2}  +  {z}^{2}.}}_{... \bf \: id(2).} \\

1)

So here,

  • x = a.

  • y = b.

By putting the values in id(1) we get:-

 \\ \tt\mapsto(x - y) {}^{2}  + 2xy =  {x}^{2}  +  {y}^{2} . \\  \\ \tt\mapsto {a}^{2}  +  {b}^{2}  = (a - b) {}^{2}  + 2ab. \\  \\ \tt\mapsto {a}^{2}  +  {b}^{2}  = (5) {}^{2}  + 2(16). \\  \\ \tt\mapsto {a}^{2}  +  {b}^{2}  = 25 + 32. \\  \\ \bf\mapsto {a}^{2}  +  {b}^{2}  = 57. \\

Therefore the required value of a²+b² = 57

2)

So Here,

  • x = a.

  • y = b.

  • z = c.

By putting the values in id(2) we get:-

 \\ \tt\mapsto {x}^{2}  +  {y }^{2}  + z {}^{2}  = (x + y + z) {}^{2}  - (xy + yz + zx). \\  \\  \tt\mapsto {a}^{2}  +  {b}^{2}  + c {}^{2}  = (9) {}^{2}  - (23). \\  \\ \tt\mapsto {a}^{2}  +  {b}^{2}  + c {}^{2}  =  81 - 23. \\  \\ \bf\mapsto {a}^{2}  +  {a}^{2}  + c {}^{2}  = 58. \\

Terefore the value of a²+b²+c² = 58.

Similar questions