Please solve this if anyone want 50 points
Attachments:
Answers
Answered by
5
Hi ,
LHS = ( sinθ - cosθ +1 )/ ( sinθ + cosθ - 1 )
= ( sinθ - cosθ + 1 ) (sinθ +cosθ + 1 )/( sinθ + cosθ - 1)(sinθ+cosθ+1)
= [(sinθ +1) -cosθ][(sinθ+1)+cosθ]/[(sinθ+cosθ)-1][(sinθ+cosθ)+1]
= [ (sinθ + 1 )² - cos²θ ] / [ (sinθ +cosθ)² - 1²]
= [ sin²θ+2sinθ+1 -cos²θ ] / [ sin²θ+cos²θ+ 2sinθcosθ -1]
= [ sin²θ + 2sinθ+ sin²θ] / [ 1 +2sinθcosθ -1 ]
=[ 2sin²θ+ 2sinθ] / ( 2sinθ cosθ )
= [ 2sinθ ( sinθ + 1 ) ] / ( 2sinθcosθ )
= ( sinθ + 1 ) / ( cosθ )
= [(sinθ / cosθ+ 1 / ( cos θ )]
= ( tanθ+ sec θ)
= [ ( sec θ + tan θ ) ( sec θ - tan θ)] / ( sec θ - tan θ)
= ( sec² θ - tan² θ ) / ( sec θ- tan θ)
= 1 / ( secθ - tan θ )
= RHS
LHS = ( sinθ - cosθ +1 )/ ( sinθ + cosθ - 1 )
= ( sinθ - cosθ + 1 ) (sinθ +cosθ + 1 )/( sinθ + cosθ - 1)(sinθ+cosθ+1)
= [(sinθ +1) -cosθ][(sinθ+1)+cosθ]/[(sinθ+cosθ)-1][(sinθ+cosθ)+1]
= [ (sinθ + 1 )² - cos²θ ] / [ (sinθ +cosθ)² - 1²]
= [ sin²θ+2sinθ+1 -cos²θ ] / [ sin²θ+cos²θ+ 2sinθcosθ -1]
= [ sin²θ + 2sinθ+ sin²θ] / [ 1 +2sinθcosθ -1 ]
=[ 2sin²θ+ 2sinθ] / ( 2sinθ cosθ )
= [ 2sinθ ( sinθ + 1 ) ] / ( 2sinθcosθ )
= ( sinθ + 1 ) / ( cosθ )
= [(sinθ / cosθ+ 1 / ( cos θ )]
= ( tanθ+ sec θ)
= [ ( sec θ + tan θ ) ( sec θ - tan θ)] / ( sec θ - tan θ)
= ( sec² θ - tan² θ ) / ( sec θ- tan θ)
= 1 / ( secθ - tan θ )
= RHS
Answered by
0
Your answer in the above attachment
Attachments:
Similar questions