Math, asked by TT432, 21 hours ago

Please solve this:
If tan
−1

x−4
x−3

+tan
−1

x+4
x+3

=
4
3

, then find the value of x

Answers

Answered by Adi935
1

Answer:

x  

2

=  

2−2tan(  

4

3

)

24−25tan(  

4

3

)

 

Step-by-step explanation:

Given tan  

−1

(  

x−4

x−3

)+tan  

−1

(  

x+4

x+3

)=  

4

3

 

Let tan  

−1

(  

x−4

x−3

)=a and tan  

−1

(  

x+4

x+3

)=b

So we have  

x−4

x−3

=tana and  

x+4

x+3

=tanb

The given equation will become a+b=  

4

3

 , Now apply tan on both sides

We get tan(a+b)=  

1−tana×tanb

tana+tanb

=tan(  

4

3

)

By substituting tan a and tanb values , we get  

1−  

x−4

x−3

×  

x+4

x+3

 

x−4

x−3

+  

x+4

x+3

 

=  

(x−4)(x+4)+(x−3)(x+3)

(x−3)(x+4)+(x+3)(x−4)

=  

2x  

2

−25

2x  

2

−24

=tan(  

4

3

)

By solving , we get x  

2

=  

2−2tan(  

4

3

)

24−25tan(  

4

3

)

 

Please mark brainliest.

Similar questions