Math, asked by pranjalsharma2004, 1 year ago

Please solve this

If you can
Q.no. 9

Attachments:

Answers

Answered by Anonymous
1

hiiii mate ...good morning..

here is ur solution..

I hope it's help..

Attachments:
Answered by sivaprasath
3

(Instead of θ, I use A)

Answer:

Step-by-step explanation:

Given :

To prove : \frac{1}{sinA + CosA} + \frac{1}{sinA - CosA} = \frac{2SinA}{1-2Cos^2A}

Proof :

We know that Sin²A + Cos²A = 1,

⇒ Sin²A = 1 - Cos²A ...(i)

LHS =  \frac{1}{sinA + CosA} + \frac{1}{sinA - CosA}

\frac{1(SinA-CosA) + 1(SinA + CosA}{(SinA + CosA)(SinA - CosA)}

\frac{SinA + CosA + SinA - CosA}{Sin^2A - Cos^2A}

\frac{2SinA}{Sin^2A - Cos^2A}

\frac{2SinA}{(1 - Cos^2A) - Cos^2A}  ( by (i) )

\frac{2SinA}{1 - 2Cos^2A} = RHS

Similar questions