Math, asked by abhijeetvshkrma, 4 months ago

Please solve this integral problem ASAP
and please no fake answers

Attachments:

Answers

Answered by Anonymous
2

\bold{\boxed{\color{red}{\bf{\underline{Hope. it's .helpful .to .you}}}}}

Attachments:
Answered by IdyllicAurora
47

Concept ::

Here the concept of Integration has been used. We see that we are given a equation to be integrated. Firstly we shall integrate with respect to x to simplify this equation. Then we will integrate and then using trigonometric identity we will integrate further to get our answer

Let's do it !!

___________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{\sin(A\:+\:B)\;=\;\bf{\sin\:A\cos\:B\;+\;\cos\:A\sin\:B}}}}

___________________________________________

Solution :-

Given,

\\\;\displaystyle{\sf{\mapsto\;\;\red{\int\:\dfrac{\sin\:x}{\sin(x\:-\;a)}\:dx}}}

Let (x - a) be t.

Then,

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\dfrac{\sin\:(t\;+\;a)}{\sin\:t}\:dx}}

(since x - a + a = t + a = x)

Now let's DIFFERENTIATE t with respect to x.

→ dt/dx = [d(x - a)] / dx

→ dt/dx = 1 (since a is constant)

dt = dx

Now let's integrate the main equation we have.

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\dfrac{\sin\:(t\;+\;a)}{\sin\:t}\:dt}}

We know that,

\\\;\tt{\rightarrow\;\;\sin(A\:+\:B)\;=\;\sin\:A\cos\:B\;+\;\cos\:A\sin\:B}

  • Here A = t
  • B = a

By applying this in the above equation, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\dfrac{\sin\:t\cos\:a\;+\;\cos\:a\sin\:t}{\sin\:t}\:dt}}

Now separating the equation, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\bigg[\bigg(\dfrac{\sin\:t\cos\:a}{\sin\:t}\bigg)\;+\;\bigg(\dfrac{\cos\:a\sin\:t}{\sin\:t}\bigg)\bigg]\:dt}}

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:(\cos\:a\:dt)\;+\;\int\;(\cot\:t\sin\:a\:dt)}}

This will give us,

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\cos\:a\:dt\;+\;\int\;\cot\:t\sin\:a\:dt}}

\\\;\displaystyle{\sf{\rightarrow\;\;\cos\:a\int\:dt\;+\;\sin\:a\int\;\cot\:t\:dt}}

(We already know that sin and cos functions are constants. )

\\\;\displaystyle{\sf{\rightarrow\;\;\cos\:a\;\times\;t\;+\;\sin\:a\:\log\bigg|\sin\:t\bigg|\;+\;C}}

Now using the value of t = x - a, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\cos\:a\;\times\;(x\:-\:a)\;+\;\sin\:a\:\log\bigg|\sin\:(x\:-\:a)\bigg|\;+\;C}}

\\\;\displaystyle{\sf{\rightarrow\;x\cos\:a\;-\;a\cos\:a\;+\;\sin\:a\:\log\bigg|\sin(x\:-\:a)\bigg|\;+\;C}}

By rearranging, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\sin\:a\:\log\bigg|\sin(x\:-\:a)\bigg|\;+\;x\cos\:a\;-\;a\cos\:a\;+\;C}}

• Let, - a cos a + C = D

Then,

\\\;\displaystyle{\sf{\rightarrow\;\;\orange{\sin\:a\:\log\bigg|\sin(x\:-\:a)\bigg|\;+\;x\cos\:a\;+\;D}}}

By applying intial equation, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\dfrac{\sin\:x}{\sin(x\:-\;a)}\:dx\;=\;\blue{\sin\:a\:\log|\sin(x\:-\:a)|\;+\;x\cos\:a\;+\;D}}}

This is the required answer.

\\\;\underline{\boxed{\tt{Required\;\:answer\;=\;\bf{\purple{\sin\:a\:\log|\sin(x\:-\:a)|\;+\;x\cos\:a\;+\;D}}}}}


Anonymous: Outstanding!
Similar questions