Math, asked by Anonymous, 1 day ago


please solve this
Integration question .​

Attachments:

Answers

Answered by anonymous1763
0

Answer:

ln ( | 1 + sin ( x ) )|/(| 2 + sin ( x ) | ) + C

or

log 1+sinx/2+sinx +c

OPTION (A) WILL BE CORRECT

Answered by rashi4717
42

Answer:

\huge\orange{\overbrace{\red{\underline{\pink{\red\:{Answer}}}}}}

= ㏒{\huge{|}}{\frac{sinx\;+\;1}{sinx\;+\;2}}{\huge{|}}+ c

Step-by-step explanation:

Given that :-

I =  \int\frac{cosx}{(1+sinx)(2+sinx)} dx

Taking t = sinx

We get dt = cos x dx

It can be written as

I = \int\frac{dt}{(1+t)(2+t)}

Taking

\frac{1}{(1+t)(2+t)} =\frac{A}{1+t} +\frac{B}{2+t}

We know that

A(2 + t) + B(1 + t) = 1

Taking t + 1 = 0 we get t = -1

Here A(2 - 1) + B(0) = 1

Where A = 1

Taking t + 2 = 0 we get t = -2

Here A (0) + B(-2 + 1) = -2

\sf\red{By\;substituting\;the\;values:-}

\frac{1}{(1+t)(2+t)} =\frac{1}{1+t} +\frac{-1}{2+t}

We can write it as :-

\int\frac{1}{(1+t)(2+t)}dt=\int\frac{1}{1+t} dt-\int\frac{1}{2+t}dt

By integrating w.r.tt :-

= ㏒  {\large{|}}{1+t}{\large{|}}-  ㏒ {\large{|}}{t+2}{\large{|}}+c

So we get

= ㏒{\large{|}}{\frac{t\;+\;1}{t\;+\;2}}{\large{|}}+ c

\sf\red{By\;substituting\;the\;values\; of\;t:-}

= \int\frac{cosx}{(1+sinx)(2+sinx)}dx

= ㏒{\large{|}}{\frac{sinx\;+\;1}{sinx\;+\;2}}{\large{|}}+ c

\large\rm\green{Therefore\;option\;A\;is\;correct}

\huge\sf\blue{\bigstar\;Hope\;its\;helpful\;to\;you\;dear\;\bigstar}

Similar questions