Math, asked by katemiddleton54, 3 months ago

please solve this,its a request i will mark brainliest whose answer is with step wise step explanation

please dont spam​

Attachments:

katemiddleton54: hello

Answers

Answered by Anonymous
117

Solution

 \tt \to \:  \dfrac{ \sqrt{ {a}^{2}  - b {}^{2} } + a }{ \sqrt{ {a}^{2}  +  {b}^{2} } + b }  \div  \dfrac{ \sqrt{ {a}^{2}  +  {b}^{2} }  - b}{a -  \sqrt{ {a}^{2}  -  {b}^{2} } }

 \tt \to \:  \dfrac{ \sqrt{ {a}^{2}  - b {}^{2} } + a }{ \sqrt{ {a}^{2}  +  {b}^{2} } + b }  \times \dfrac{a -  \sqrt{ {a}^{2} -  {b}^{2}  } }{ \sqrt{ {a}^{2} -  {b}^{2}  }  - b}

Now We are using identities

 \tt \to( {a}  + b)(a - b) =  {a}^{2}  -  {b}^{2}

We get

 \tt \to \:  \dfrac{(a)^{2}  - ( \sqrt{ {a}^{2}  -  {b}^{2} }) {}^{2}  } {( \sqrt{ {a}^{2} +  {b}^{2}})^{2}   - (b)^{2} }

 \tt \to \:  \dfrac{ {a}^{2} -  {a}^{2}  +  {b}^{2}  }{ {a}^{2}  +  {b}^{2}  -  {b}^{2} }

 \tt \to \:  \dfrac{ {b}^{2} }{ {a}^{2} }

Answer

 \tt \to \:  \dfrac{ {b}^{2} }{ {a}^{2} }


Anonymous: Magnificent !
Anonymous: Nice
Anonymous: Superb ✌
Anonymous: Awesome bro :kul:
ItzMultipleThanker: Amazing!
ItsBrainest: Nice bro.
Anonymous: Awesome answer
Answered by Anonymous
36

Refers to attachment..................

‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ Ⓥⓐⓜⓟⓘⓡⓔ™

Attachments:

Anonymous: Nice, keep up the good work :)
Similar questions