Math, asked by mohammadanas92, 11 months ago

please solve this its urgent Please give the answer as an attachment​

Attachments:

Answers

Answered by imDrDrunkenstein
1

Answer:

here u go

Step-by-step explanation:

follow this attachment..hope u understand

Attachments:
Answered by basavaraj5392
0

Step-by-step explanation:

(tan A /1-tan A)-( cot A/1-cot A )= (cos A+sin A)/(cos A-sin A)

LHS=(tan A /1-tan A)-( cot A/1-cot A )

 =  \frac{ \frac{ \sin \:  \alpha  }{ \cos( \alpha ) } }{1 -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }  -  \frac{ \frac{ \cos( \alpha ) }{ \ \sin( \alpha )  } }{1 -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } }  \\  =  \frac{ \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }{  \frac{ \cos( \alpha ) -  \sin( \alpha )  }{ \cos( \alpha ) }  }  -  \frac{ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } }{ \frac{ \sin( \alpha ) -  \cos( \alpha )  }{ \sin( \alpha ) } }  \\  =  \frac{ \sin( \alpha ) }{ \cos( \alpha )  }  \times  \frac{ \cos( \alpha ) }{ \cos( \alpha ) -  \sin( \alpha )  }  -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \times  \frac{ \sin( \alpha ) }{ \sin( \alpha ) -  \cos( \alpha )  }  \\  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) -  \sin( \alpha )  }  -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) -  \cos( \alpha )  }  \\  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) -  \sin( \alpha )  }  -  \frac{ \cos( \alpha ) }{ - (\cos( \alpha ) -  \sin( \alpha ))  }  \\  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) -  \sin( \alpha )  }   +   \frac{ \cos( \alpha ) }{ \cos( \alpha ) -  \sin( \alpha )  }  \\ =  \frac{ \sin( \alpha ) +  \cos( \alpha ) }{ \cos( \alpha) -  \sin( \alpha )  }

Similar questions