Math, asked by gaurav739, 9 months ago

please solve this JEE advance level problem?​

Attachments:

Answers

Answered by senboni123456
0

Answer:

x=30

Step-by-step explanation:

Given,

 log_{2}(x) . log_{3}(x) .  log_{5}(x) =  log_{2}(x). log_{3}(x) +  log_{3}(x). log_{5}(x)  +  log_{5}(x). log_{2}(x)

 \frac{ ln(x) }{ ln(2) } . \frac{ ln(x) }{ ln(3) }. \frac{ ln(x) }{ ln(5) } =  \frac{ ln(x) }{ ln(2) } . \frac{ ln(x) }{ ln(3) } +  \frac{ ln(x) }{ ln(3) } . \frac{ ln(x) }{ ln(5) } +  \frac{ ln(x) }{ ln(5) }. \frac{ ln(x) }{ ln(2) }

as we know that,

 log_{a}(b)  =  \frac{ log(a) }{ log(b) }

 \frac{ { (ln(x) )}^{3} }{ ln(2). ln(3). ln(5)   }  =  ( ln(x))^{2} ( \frac{ ln(2) +  ln(3) +  ln(5)   }{ ln(2). ln(3). ln(5)   } )

on simplyfing,

 ln(x)  =  ln(2)  +  ln(3)  +  ln(5)

As we know,

 log(a.b.c)  =  log(a)  +  log(b) +  log(c)

so, we have,

 ln(x)  =  ln(2.3.5)

 ln(x)  =  ln(30)

x = 30

Hope this will help you..!

Similar questions
Math, 9 months ago