please solve this
Log 49√7 + log 25√5 + log 4√2
Answers
☆your Question:-
Log 49√7 + log 25√5 + log 4√2
☆your Answer:-
log497+log255−log42
=log10175log72.71/2+log52.51/2−log22.21/2
=log35/2log75/2+log55/2−log25/2
=25log35/2[log7+log5−log2]=25.log35/2log235
=25
☆ THANK YOU ☆
Given:
An expression in logarithmic form log 49√7 + log 25√5 + log 4√2.
To Find:
The value of the expression after simplification.
Solution:
The given problem can be solved using the properties of logarithms.
1. The given expression is log49√7 + log 25√5 + log 4√2.
2. The above expression can be further simplified as,
=> log49√7 + log 100√10, (log a + log b = log(ab)).
=> log49√7 + log 100 + log√10, (log (ab)= log a + log b)
=> log49√7 + log + log ,
=> log + 2 + 1/2, (log = 2 log x),
=> 3/2 (log 7) + 5/2,
=> 3/2 (0.845) + 2.5, ( Substituting the value of log7 as 0.845).
=> 1.5(0.845) + 2.5,
=> 1.2675 + 2.5,
=> 3.7675.
Therefore, the value of the expression log49√7 + log 25√5 + log 4√2 is 3.7675.