Math, asked by aadishree7667, 11 months ago

please solve this MATHS question...

no wrong answers please ..

Attachments:

Answers

Answered by Anonymous
1

SOLUTION:

Let us assume that sin^-1(3/5) = x and sin^-1(8/17) = y.

 \implies \bf \:  \sin ^{ - 1}  \bigg( \frac{3}{5} \bigg ) = x \\  \\  \implies \bf \:  \sin \: x =  \bigg( \frac{3}{5} \bigg ) \\  \\  \implies \bf \:  \cos \: x \:  =  \sqrt{1 -  \sin ^{2} x}  \\  \\  \implies \:  \bf \:  \sqrt{1 -  \bigg( \frac{3}{5} \bigg) ^{2}  }  \\  \\  \implies \:  \bf \:  \sqrt{1 -  \bigg( \frac{9}{5} \bigg )}  \\  \\  \implies \bf \:  \frac{4}{5}  \\  \\  \implies \bf \:  \cos \: x \:  =  \frac{4}{5}

now find the value of of sin y

 \implies \bf \sin ^{ - 1}  \bigg( \frac{8}{17}  \bigg) \:  = y \\  \\  \implies \bf \sin \: y \:  =   \frac{8}{17}  \\  \\  \implies \bf \sin \: y =  \sqrt{1 -  \sin^{2}  y}  \\  \\  \implies \:  \bf \sqrt{1 -  \bigg( \frac{8}{17}  \bigg)^{2}  }  \\ \\  \implies \:  \bf \:  \sqrt{1 -  \bigg( \frac{64}{289} \bigg) }  \\  \\  \implies \:  \bf \:  \frac{15}{7}  \\  \\  \implies \bf \:  \sin \: y =  \frac{15}{7}

As we know that cos(a-b) = cos a cos b + sin a sin b.

  \implies \bf \: \cos(x - y) =  \:  \frac{4}{5}  \times  \frac{15}{7}  +  \frac{3}{5}  \times  \frac{8}{17}  \\  \\  \implies \bf \:  \cos(x - y)  =  \frac{60 + 24}{17 \times 5}  \\  \\  \implies \bf \cos(x - y)  =  \frac{84}{85}  \\  \\  \implies \bf \: (x - y) \ = cos ^{ - 1}   \bigg(\frac{84}{85}  \bigg)

Putting the value of x and y we get,

 \implies \bf \sin ^{ - 1}  \frac{3}{5}  -  \sin ^{ - 1}  \frac{8}{7}  =  \cos ^{ - 1}  \frac{84}{85}

LHS = RHS

HENCE PROVED

Answered by Anonymous
1

YARR 50 points ke Question kyu Nahi puchte ???

Similar questions