Math, asked by aadishree7667, 8 months ago

please solve this Maths question....only if you know..no wrong answers please...... ​

Attachments:

Answers

Answered by Anonymous
5

Answer :D

f(x) = –3x3 – 24x2 – 45x

= – 3x (x2 + 8x + 15) = – 3x (x + 5) (x + 3)

f(x) = 0 ⇒ x = –5, x = –3, x = 0

f ″(x) = –9x2 – 48x – 45 = –3 (3x2 + 16x + 15)

f ″(0) = – 45 < 0

Therefore, x = 0 is point of local maxima f ″(–3) = 18 > 0.

Therefore, x = –3 is point of local minima f ″(–5) = –30 < 0.

Therefore x = –5 is point of local maxima

</p><p>&lt;!DOCTYPE html&gt;</p><p>&lt;html&gt;</p><p>    &lt;head&gt;</p><p>        &lt;title&gt;SweatHeart&lt;/title&gt;</p><p>    &lt;/head&gt;</p><p>    &lt;body&gt;</p><p>    &lt;svg width="360" height="544" style="background-color:rgba(255,255,255,1);"&gt;</p><p>        </p><p>        &lt;circle id="1" cx="72" cy="17" r="3" fill="rgba(255,128,0,.6)"&gt;</p><p>    &lt;animate attributeName="cx" begin="2" from="72" to="330" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cy" begin="2" from="17" to="87" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="r" begin="2" from="3" to="340" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="fill" begin="2" from="rgba(255,128,0,.6)" to="rgba(255,128,0,.2)" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cx" begin="7" from="330" to="30" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/circle&gt;</p><p></p><p>        &lt;circle id="4" cx="288" cy="17" r="3" fill="rgba(255,128,0,.6)"&gt;</p><p>    &lt;animate attributeName="cx" begin="2" from="288" to="30" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cy" begin="2" from="17" to="87" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="r" begin="2" from="3" to="340" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="fill" begin="2" from="rgba(255,128,0,.6)" to="rgba(255,128,0,.2)" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cx" begin="7" from="30" to="330" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/circle&gt;</p><p>        </p><p>        &lt;circle id="2" cx="144" cy="17" r="3" fill="rgba(0,128,255,.6)"&gt;</p><p>    &lt;animate attributeName="cx" begin="2" from="144" to="30" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cy" begin="2" from="17" to="87" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="r" begin="2" from="3" to="340" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="fill" begin="2" from="rgba(0,128,255,.6)" to="rgba(0,128,255,.2)" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cx" begin="7" from="30" to="267" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cy" begin="7" from="87" to="162" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="r" begin="7" from="340" to="92" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/circle&gt;</p><p>        </p><p>        &lt;circle id="3" cx="216" cy="17" r="3" fill="rgba(0,128,255,.6)"&gt;</p><p>    &lt;animate attributeName="cx" begin="2" from="216" to="330" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cy" begin="2" from="17" to="87" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="r" begin="2" from="3" to="340" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="fill" begin="2" from="rgba(0,128,255,.6)" to="rgba(0,128,255,.2)" dur="5" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cx" begin="7" from="330" to="93" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="cy" begin="7" from="87" to="162" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="r" begin="7" from="340" to="92" dur="10" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/circle&gt;</p><p>        </p><p>        &lt;path style="fill:rgba(255,255,255,0); stroke:#fff; stroke-width:0;" d="M 0 163 C 2 215, 49 323, 180 393 C 311 323, 358 215, 360 163 V 544 H 0 z"&gt;</p><p>    &lt;animate attributeName="fill" begin="21.5" from="rgba(255,255,255,0)" to="rgba(255,255,255,1)" dur=".37" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/path&gt;</p><p>        </p><p>        &lt;rect x="0" y="0" width="360" height="162" fill="rgba(255,255,255,0)"&gt;</p><p>    &lt;animate attributeName="fill" begin="20.4" from="rgba(255,255,255,0)" to="rgba(255,255,255,1)" dur=".37" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/rect&gt;</p><p>        </p><p>        &lt;path style="fill:rgba(206,27,14,0); stroke:#fff; stroke-width:0;" d="M 0 162 C 1 215, 50 322, 180 392 C 310 322, 359 215, 360 162 z"&gt;</p><p>    &lt;animate attributeName="stroke-width" begin="19" from="0" to="5" dur=".37" fill="freeze" repeatCount="1"/&gt;</p><p>    &lt;animate attributeName="fill" begin="18" from="rgba(206,27,14,0)" to="rgba(206,27,14,1)" dur=".37" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/path&gt;</p><p>        </p><p>        &lt;circle cx="94" cy="162" r="92" fill="rgba(206,27,14,0)"&gt;</p><p>    &lt;animate attributeName="fill" begin="18" from="rgba(206,27,14,0)" to="rgba(206,27,14,1)" dur=".37" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/circle&gt;</p><p>        </p><p>        &lt;circle cx="266" cy="162" r="92" fill="rgba(206,27,14,0)"&gt;</p><p>    &lt;animate attributeName="fill" begin="18" from="rgba(206,27,14,0)" to="rgba(206,27,14,1)" dur=".37" fill="freeze" repeatCount="1"/&gt;</p><p>        &lt;/circle&gt;</p><p>        </p><p>    &lt;/svg&gt;</p><p>    &lt;/body&gt;</p><p>&lt;/html&gt;</p><p>

Answered by Lueenu22
0

Step-by-step explanation:

Answer :D

f(x) = –3x3 – 24x2 – 45x

= – 3x (x2 + 8x + 15) = – 3x (x + 5) (x + 3)

f(x) = 0 ⇒ x = –5, x = –3, x = 0

f ″(x) = –9x2 – 48x – 45 = –3 (3x2 + 16x + 15)

f ″(0) = – 45 < 0

Therefore, x = 0 is point of local maxima f ″(–3) = 18 > 0.

Therefore, x = –3 is point of local minima f ″(–5) = –30 < 0.

Therefore x = –5 is point of local maxima

Similar questions