Math, asked by MonsieurBrainly, 1 year ago

Please solve this.
Need all the steps.

Attachments:

Answers

Answered by chopraneetu
7
please refer to attachment
Attachments:

MonsieurBrainly: what is C & D
MonsieurBrainly: C & D
chopraneetu: compenando and divedendo
chopraneetu: componendo and dividendo
MonsieurBrainly: I don't know what it is
MonsieurBrainly: U know what? u disturbe us by posting things like "lol" in comments
chopraneetu: When you apply Componendo and Dividendo to a fraction let us say X/Y,
then the fraction will become (X+Y)/(X-Y).
chopraneetu: When you apply Componendo and Dividendo to a fraction let us say X/Y, then the fraction will become (X+Y)/(X-Y).
Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the Componendo - Dividendo rule that

 \implies \:   \displaystyle \: \frac{a}{b}  =  \frac{c}{d}  \:  \:  \: implies \:  \:  \frac{a + b}{a - b}  =  \frac{c + d}{c - d}

GIVEN

  \displaystyle \:  \frac{ \sqrt{3 - x}  +  \sqrt{3 + x} }{ \sqrt{3 - x}   -   \sqrt{3 + x}} = 5

TO DETERMINE

The value of x

CALCULATION

   \displaystyle \:  \frac{ \sqrt{3 - x}  +  \sqrt{3 + x} }{ \sqrt{3 - x}   -   \sqrt{3 + x}} = 5

By the Componendo - Dividendo rule we get

   \implies \:  \displaystyle \:  \frac{ (\sqrt{3 - x}  +  \sqrt{3 + x})  + (\sqrt{3 - x}   -   \sqrt{3 + x} )\: }{ (\sqrt{3 - x}   -   \sqrt{3 + x}) - (\sqrt{3 - x}   -   \sqrt{3 + x})} =  \frac{5 + 1}{5 - 1}

 \implies \:   \displaystyle \:  \frac{ 2\sqrt{3 - x}   }{ 2   \sqrt{3 + x}} =  \frac{6}{4}

 \implies \:   \displaystyle \:  \frac{ \sqrt{3 - x}   }{   \sqrt{3 + x}} =  \frac{3}{2}

Squaring both sides

 \implies \:   \displaystyle \:  \frac{ {3 - x}   }{ {3 + x}} =  \frac{9}{4}

 \implies \:  27 + 9x = 12 - 4x

 \implies \:   13x =  - 15

    \displaystyle \:   \therefore \: x =  -  \frac{15}{13}

Similar questions