Math, asked by tudestudy, 10 months ago

please solve this
need it fast guys​

Attachments:

Answers

Answered by Rajshuklakld
2

1)

t1 = 2. {3}^{1 - 1}  + 1  = 2 \times  {3}^{0} + 1  \\ t2 = 2. {3}^{2 - 1}  + 1 = 2 \times  {3}^{1}  + 1 \\ t3 = 2. {3}^{3 - 1} + 1 = 2 \times  {3}^{2}  + 1 \\ .  \:  \:  \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  \:  \:  \:  \: .\:  \:  \:  \:  \:  \:  \: \:  \:  . \\ . \:  \:  \: \:  \: \:  \: \:  \:  .  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .\\ tr = 2 \times  {3}^{r - 1}  + 1 = 2 \times  {3}^{r - 1}  + 1 \\   \\ t1 +  t2 + t3 + ... + tr = 2 \times  \frac{ {3}^{0}( {3}^{r}  - 1)}{3 - 1}  + r \\ sum \: upto \: r \: terms =  {3}^{r}  - 1 + r

8)Let the first term of that GP be A

Then,

 a =  {A}^{p - 1}  \\ b =  {A}^{q - 1} \\ c =  {A}^{r - 1}  \\ putting \: this \: value \: of \: a \: b \: and \: c \: in \: LHS \: we \: get \\( { {A}^{p - 1} })^{q - r}.( { {A}^{q - 1} })^{r - p}.  ({ {A}^{r - 1} })^{p - q}  \\ adding \: all \: the \: powers \: we \: get \\  {A}^{0}  = 1 = rhs

Similar questions