Math, asked by Pl007, 1 year ago

Please solve this need urgent

Attachments:

Answers

Answered by Anonymous
139

\underline{\underline{\mathfrak{\green{Answer:-}}}}

(C) Sn = \dfrac{n(n+1)}{\sqrt{2}}

\\

\underline{\underline{\mathfrak{\green{Explanation:-}}}}

Given:

The series is-

\sqrt{2} + \sqrt{8}+\sqrt{18} +\sqrt{32}+ ........

\\

To Find:

Sum of "n" terms of the series

\\

Solution:

The Given series is-

\sqrt{2} + \sqrt{8}+\sqrt{18} +\sqrt{32}+ ........

\\

Here,

a \:\:or\:\: a1= \sqrt{2}

a2= \sqrt{8} = 2 \sqrt{2}

 a3 = \sqrt{18} = 3 \sqrt{2}

\\

d = a2 - a1 = a3- a2

d = \sqrt{8} - \sqrt{2} = \sqrt{18}- \sqrt{8}

d = 2\sqrt{2} - \sqrt{2} =3 \sqrt{2}- 2\sqrt{2}

d = \sqrt{2} = \sqrt{2}

\\

Since,

Common difference is equal

Therefore, the above series is in AP

\\

By the sum of "n" terms formula-

\boxed{\pink{Sn = \dfrac{n}{2}[2a+(n-1)d]}}

\\

By sub. the values-

\mathsf{Sn = \dfrac{n}{2}[2(\sqrt{2)}+(n-1)(\sqrt{2})]}

\\

\mathsf{Sn = \dfrac{n}{2}[2\sqrt{2}+\sqrt{2}n-\sqrt{2}]}

\\

\mathsf{Sn = \dfrac{n}{2}[\sqrt{2}+\sqrt{2}n]}

\\

\mathsf{Sn = \dfrac{\sqrt{2}n(n+1)}{2}}

\\

\mathsf{Sn = \dfrac{\sqrt{2}n(n+1)}{\sqrt{2} \times \sqrt{2}}}

\\

\mathsf{Sn = \dfrac{\cancel{\sqrt{2}}n(n+1)}{\cancel{\sqrt{2}} \times \sqrt{2}}}

\\

\mathsf{Sn = \dfrac{n(n+1)}{\sqrt{2}}}

\\

Hence,

Sum of n terms is

\\

\dfrac{n(n+1)}{\sqrt{2}}


Swetha02: :)
Princess1234567: fab ans yrr ❤️
Princess1234567: fan ans yrr ❤️
pranay014: xd
Princess1234567: yup !
pranay014: hello
Anonymous: ✌✌best
Anonymous: Thnk u!
Answered by Anonymous
55

Solution is in attachment

Leave a comment if have any doubts ......

☺☺ THANK U ☺☺

Attachments:

tina9961: osm ! fantastic !
Princess1234567: Tod ans bro ❤️
Anonymous: thank u
Anonymous: master
Princess1234567: ^_^
Anonymous: Osm ans
Anonymous: Not at all
Anonymous: fantastic ans...!!^_^
Anonymous: xd
Anonymous: Nice one !
Similar questions