Please solve this one
In the Triangle ABC, AC^2 = AB^2 + BC^2. If CE and AF are the medians of the Triangle. Show that, AF^2 = 1/4(5AC^2 - 4CE^2)
Answers
Answered by
2
✪AnSwEr
- A ∆ ABC in which AF and EC are median
- AE=EB and BF=FC
- AF²=1/4(5AC²-4CE²)
Fom big ∆ABC
- right angled at b
From Pythagoras Theorm
AB²+BC²=AC²
In ∆ ABF
AB²+BF²=AF²______(2)
In ∆ EBC
BE²+BC²=EC²
=>(1/4AB²)+4BF²= EC² ______(3)
Now joing equation 2 and 3
AB²+BF²=AF²
(1/4AB²)+4BF²= EC²
________________
(5/4 AB²)+5BF²=AF²+EC²
Now we conclude
_________________________
(5/4 AB²)+(5/4Bc²)=AF²+EC²
=>5/4(AB²+BC²)=AF²+EC²
=>5/4(AC²) =AF²+EC²
=>5AC²=4AF²+4EC²
=>5AC²-4EC³=4AF²
=>1/4(5AC²-4EC²)=AF²
__________________________
Henec,proved
Attachments:
Similar questions