Math, asked by ninjahatoriofficial, 10 months ago

Please solve this one

In the Triangle ABC, AC^2 = AB^2 + BC^2. If CE and AF are the medians of the Triangle. Show that, AF^2 = 1/4(5AC^2 - 4CE^2)

​​

Answers

Answered by Abhishek474241
2

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A ∆ ABC in which AF and EC are median
  • AE=EB and BF=FC

{\sf{\green{\underline{\large{To\:find}}}}}

  • AF²=1/4(5AC²-4CE²)

{\sf{\pink{\underline{\Large{Explanation}}}}}

Fom big ∆ABC

  • right angled at b

From Pythagoras Theorm

AB²+BC²=AC²

In ∆ ABF

AB²+BF²=AF²______(2)

In ∆ EBC

BE²+BC²=EC²

=>(1/4AB²)+4BF²= EC² ______(3)

Now joing equation 2 and 3

AB²+BF²=AF²

(1/4AB²)+4BF²= EC²

________________

(5/4 AB²)+5BF²=AF²+EC²

Now we conclude

_________________________

(5/4 AB²)+(5/4Bc²)=AF²+EC²

=>5/4(AB²+BC²)=AF²+EC²

=>5/4(AC²) =AF²+EC²

=>5AC²=4AF²+4EC²

=>5AC²-4EC³=4AF²

=>1/4(5AC²-4EC²)=AF²

__________________________

Henec,proved

Attachments:
Similar questions