Math, asked by kunalchaprana143, 9 months ago

please solve this perfect ​

Attachments:

Answers

Answered by crazyartistslifebmh6
1

it's your perfectly answer

Attachments:
Answered by omsingh020304
1

Answer:

here is your answer

Step-by-step explanation:

Let AB and CD be two poles of heights a metres and b metres respectively such that the poles are p metres apart i.e.AC=p metres. Suppose the lines AD and BC meet at O such that OL=h metres.  

Let CL=x and LA=y. Then, x+y=p.

In △ABC and △LOC, we have

    ∠CAB=∠CLO           [Each equal to 90  ∘  ]

    ∠C=∠C                    [Common]

∴ △CAB∼△CLO           [By AA-criterion of similarity]

⇒   CL /CA  =  LO /AB

⇒   p /x =a/h

⇒ x=  ph /a                                                   ...........(i)

In △ALO and △ACD, we have

∠ALO=∠ACD            [Each equal to 90∘ ]

 ∠A=∠A                    [Common]  

∴ △ALO∼△ACD      [By AA-criterion of similarity]      

⇒   AC /AL =DC/ OL

⇒  y/p=h/b

⇒  y=  ph /b                            [∵ AC=x+y=p]........(ii)

    From (i) and (ii), we have

x+y= ph/a+ph/b

⇒ p=ph(  1/a+1/b)                  [∵ x+y=p]

⇒ 1=h(  a+b /ab)

 h=  a+b /ab  metres

Hence, the height of the intersection of the lines joining the top of each pole to the foot of the opposite pole is  

a+b /ab  metres

Similar questions