Math, asked by midlajmidu0063, 4 months ago

please solve this pleaaaaaaaaaaaaaaaasssssee​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

  \lim_{x \rarr0} \frac{ \cos(9x)  -  \cos(5x) }{ \sin(17x)  -  \sin(3x) } \\

 =  \lim_{ x\rarr0} \frac{ - 2 \sin(7x) \sin(2x)  }{2 \cos(10x) \sin(7x)  }  \\

 = -   \lim_{ x\rarr0} \frac{ \sin(2x)  }{\cos(10x)  }  \\

 =  - \lim_{ x\rarr0} \frac{ \sin(2x) }{2x}  \times  \frac{2x}{ \cos(10x) }  \\

 =  - \lim_{ 2x\rarr0} \frac{ \sin(2x) }{2x}  \times \lim_{ x\rarr0} \frac{2x}{ \cos(2x) }  \\

  =  - 1 \times 0

 = 0

Similar questions