Math, asked by RuDrAkSh121, 9 days ago

Please solve this pleaseeee ​

Attachments:

Answers

Answered by user0888
9

\large\underline{\text{Important concepts}}

Given that \dfrac{a}{b}=\dfrac{c}{d},\ bd\neq0, supposing denominator is nonzero

\red{\bigstar}Componendo

\implies\dfrac{a+b}{b}=\dfrac{c+d}{d}

\implies\dfrac{a+kb}{a+kb}=\dfrac{c+kd}{c+kd}

\red{\bigstar}Dividendo

\implies\dfrac{a-b}{b}=\dfrac{c-d}{d}

\implies\dfrac{a+kb}{a-kb}=\dfrac{c+kd}{c-kd}

\red{\bigstar}Invertendo

\implies\dfrac{b}{a}=\dfrac{d}{c}

\red{\bigstar}Alternando

\implies\dfrac{b}{c}=\dfrac{d}{a}

\red{\bigstar}Componendo et Dividendo

From Dividendo, where k=1

\implies\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}

\large\underline{\text{Solution, Question 22}}

Consider

\implies x=\dfrac{x}{1}

It is given that

\implies x=\dfrac{\sqrt[3]{m+1}+\sqrt[3]{m-1}}{\sqrt[3]{m+1}-\sqrt[3]{m-1}}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x+1}{x-1}=\sqrt[3]{\dfrac{m+1}{m-1}}

Cube both sides

\implies\left(\dfrac{x+1}{x-1}\right)^{3}=\dfrac{m+1}{m-1}

\implies\dfrac{x^{3}+3x^{2}+3x+1}{x^{3}-3x^{2}+3x-1}=\dfrac{m+1}{m-1}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x^{3}+3x}{3x^{2}+1}=m

Cross multiplication

\implies x^{3}+3x=m(3x^{2}+1)

\implies x^{3}-3mx^{2}+3x=m

\large\underline{\text{Solution, Question 23, A}}

Consider

\implies x=\dfrac{x}{1}

Given that

\implies\dfrac{x}{1}=\dfrac{\sqrt{2a+1}+\sqrt{2a-1}}{\sqrt{2a+1}-\sqrt{2a-1}}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x+1}{x-1}=\dfrac{2\sqrt{2a+1}}{2\sqrt{2a-1}}

\implies\dfrac{x+1}{x-1}=\sqrt{\dfrac{2a+1}{2a-1}}

Square both sides

\implies\dfrac{x^{2}+2x+1}{x^{2}-2x+1}=\dfrac{2a+1}{2a-1}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x^{2}+1}{2x}=2a

Cross multiplication

\implies x^{2}+1=4ax

\large\underline{\text{Solution, Question 23, B}}

Consider

\implies x=\dfrac{x}{1}

It is given that

\implies\dfrac{x}{1}=\dfrac{\sqrt{a+3b}+\sqrt{a-3b}}{\sqrt{a+3b}-\sqrt{a-3b}}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x+1}{x-1}=\sqrt{\dfrac{a+3b}{a-3b}}

Square both sides

\implies\dfrac{x^{2}+2x+1}{x^{2}-2x+1}=\dfrac{a+3b}{a-3b}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x^{2}+1}{2x}=\dfrac{a}{3b}

Cross multiplication

\implies3b(x^{2}+1)=2ax

\implies3bx^{2}-2ax+3b=0

\large\underline{\text{Solution, Question 24}}

Consider

\implies b=\dfrac{b}{1}

It is given that

\implies\dfrac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=\dfrac{b}{1}

\red{\bigstar}Componendo et Dividendo

\implies\sqrt{\dfrac{a+x}{a-x}}=\dfrac{b+1}{b-1}

Square both sides

\implies\dfrac{a+x}{a-x}=\dfrac{b^{2}+2b+1}{b^{2}-2b+1}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{a}{x}=\dfrac{b^{2}+1}{2b}

Hence

\implies x=\dfrac{2ab}{b^{2}+1}

\large\underline{\text{Solution, Question 25, A}}

It is given that

\implies\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\dfrac{4x-1}{2}

\red{\bigstar}Componendo et Dividendo

\implies\sqrt{\dfrac{x+1}{x-1}}=\dfrac{4x+1}{4x-3}

Squaring both sides

\implies\dfrac{x+1}{x-1}=\dfrac{4x+1}{4x-3}

Cross multiplication

\implies(x+1)(4x-3)=(x-1)(4x+1)

\implies 4x^{2}+x-3=4x^{2}-3x-1

\implies4x=2

\implies x=\dfrac{1}{2}

\large\underline{\text{Solution, Question 25, B}}

It is given that

\implies\dfrac{\sqrt{x+4}+\sqrt{x-10}}{\sqrt{x+4}-\sqrt{x-10}}=\dfrac{5}{2}

\red{\bigstar}Componendo et Dividendo

\implies\sqrt{\dfrac{x+4}{x-10}}=\dfrac{7}{3}

Squaring both sides

\implies\dfrac{x+4}{x-10}=\dfrac{49}{9}

Cross multiplication

\implies 9(x+4)=49(x-10)

\implies -40x=-526

\implies x=\dfrac{263}{20}

\large\underline{\text{Solution, Question 25, C}}

It is given that

\implies\dfrac{x^{3}+3x}{3x^{2}+1}=\dfrac{341}{91}

\red{\bigstar}Componendo et Dividendo

\implies\dfrac{x^{3}+3x^{2}+3x+1}{-x^{3}+3x^{2}-3x+1}=\dfrac{432}{250}

\implies-\left(\dfrac{x+1}{x-1}\right)^{3}=\dfrac{216}{125}

\implies\left(\dfrac{x+1}{x-1}\right)^{3}=\left(-\dfrac{6}{5}\right)^{3}

Putting cube root

\implies\dfrac{x+1}{x-1}=\dfrac{6}{-5}

\red{\bigstar}Componendo et Dividendo

\implies x=\dfrac{1}{11}

Since the answer exceeded 5000 characters, I am putting the rest on the attachment.

Attachments:
Answered by geniusranksinghmohan
4

Step-by-step explanation:

topic :

  • componedo and dividendo

to find :

  • what is use in thse number
  • componedo and dividendo

solution :

  • please check the attached file where you find your answer

Attachments:
Similar questions