Math, asked by joydeeproy162, 10 months ago

please solve this problem

Attachments:

Answers

Answered by Sarthak1928
1

Given;

 \frac{1}{{1 +  \sqrt{2} } }  +  \frac{1}{ \sqrt{2}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{3}  +  \sqrt{4} }  \\ \\  this \: can \: also \: be \: written \: as \:  \\ \\    \frac{1}{{ \sqrt{2} + 1 } }  +  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  +  \frac{1}{ \sqrt{4}  +  \sqrt{3} } \\  \\ then \: on \: rationalising \: them :  \\  \\  \frac{ \sqrt{2} - 1 }{ { \sqrt{2} }^{2} -  {1}^{2}  }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ { \sqrt{3} }^{2} -   \sqrt{2}^{2}  }  +  \frac{ \sqrt{4}  -  \sqrt{3} }{ { \sqrt{4} }^{2}  -   \sqrt {3}^{2} }  \\  \\  \frac{ \sqrt{2}   -  1}{1}  +  \frac{ \sqrt{3}  -  \sqrt{2} }{1}  +   \frac{ \sqrt{4} -  \sqrt{3}  }{1}  \\  \\  \frac{ \sqrt{2} - 1 +  \sqrt{3}  -  \sqrt{2}  +  \sqrt{4}  -  \sqrt{3} }{1}  \\  \\  \frac{ - 1 +  \sqrt{4} }{1}  \\  \\  \frac{ - 1 + 2}{1}  \implies \:  \frac{1}{1}  = 1

#answerwithquality

#BAL

Similar questions