Math, asked by sami8792, 9 months ago

please solve this problem​

Attachments:

Answers

Answered by shadowsabers03
1

\displaystyle\longrightarrow\sf {x=2+\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}\quad\quad\dots (1)}

\displaystyle\longrightarrow\sf {x-2=\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}}

\displaystyle\longrightarrow\sf {(x-2)^2=2+\sqrt{2+\sqrt{2+\dots}}}

That is,

\displaystyle\longrightarrow\sf {(x-2)^2=x}

\displaystyle\longrightarrow\sf {x^2-4x+4=x}

\displaystyle\longrightarrow\sf {x^2-5x+4=0}

\displaystyle\longrightarrow\sf {x^2-x-4x+4=0}

\displaystyle\longrightarrow\sf {x(x-1)-4(x-1)=0}

\displaystyle\longrightarrow\sf {(x-1)(x-4)=0}

This implies,

\displaystyle\longrightarrow\sf {x=1\quad or\quad x=4}

But from (1) we see that,

\displaystyle\longrightarrow\sf {x\ \textgreater\ 2}

Therefore,

\displaystyle\longrightarrow\sf {\underline {\underline{x=4}}}

Similar questions