Please solve this problem
Attachments:
Answers
Answered by
0
Answer:
Given:
tangentθ+sineθ=m
tangentθ-sineθ=n
∴ m+n=tanθ+sinθ+tanθ-sinθ
=2tanθ
∴m-n=tanθ+sinθ-tanθ+sinθ
=2sinθ
and, mn=(tanθ+sinθ)(tanθ-sinθ)
=tan²θ-sin²θ
∴ mn=m²-n²
Thus,
LHS=m²–n²=(m+n)(m-n)
=2tanθ.2sinθ
=4sinθtanθ
RHS=4√mn=4√(tan²θ-sin²θ)
=4√(sin²θ/cos²θ-sin²θ)
[∵ tanθ=sinθ/cosθ]
=4√sin²θ(1/cos²θ-1)
=4sinθ√(1-cos²θ)/cos²θ
=4sinθ/cosθ√sin²θ [∵ sin²θ+cos²θ=1]
∴ LHS=4sinθtanθ=RHS
∵LHS=RHS
(Hence, proved)
Answered by
0
Step-by-step explanation:
Please mark this as brainliest. Please please l
Attachments:
Similar questions