Math, asked by pranshukr06, 8 months ago

Please solve this problem

Attachments:

Answers

Answered by saounksh
0

Step-by-step explanation:

Let α, β, γ be the three angles and a, b, c be the side opposite to the angles of a triangle ABC

Relation between α, β, γ

It is given that

3α + 2β = 180º ..........(1)

Sum of three angles of a triangle is 180º

α + β + γ = 180º..........(2)

Substracting (1) and (2) we get

2α + β - γ = 0

or γ = 2α + β

 \sin( \gamma )  =  \sin(2 \alpha  +  \beta )

  \sin( \gamma )  = \sin(2 \alpha )  \cos( \beta )  +  \cos(2 \alpha )  \sin( \beta ) ...</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>.....(3)

Sine Formula

 \frac{a}{ \sin( \alpha ) }  =  \frac{b}{ \sin( \beta ) }  =  \frac{c}{ \sin( \gamma ) }  = k

a = k \sin( \alpha )

b =  k\sin( \beta )

c = k \sin( \gamma )

Proof

LHS =

 {a}^{2}  + bc

Using Sine Formula

 {k}^{2}  \sin {}^{2} ( \alpha )  +  {k}^{2}  \sin( \beta ) \sin( \gamma )

Using value of sin(γ) from (3)

 {k}^{2} ( \sin {}^{2} ( \alpha )  +  \sin( \beta ) ( \sin(2 \alpha )  \cos( \beta )  +  \cos(2 \alpha )  \sin( \beta ) )

   {k}^{2} ( \sin {}^{2} ( \alpha )  +  \sin(2 \alpha ) \sin( \beta )  \cos( \beta )  +  \cos(2 \alpha )  \sin {}^{2} ( \beta ) )

 {k}^{2} ( \sin {}^{2} ( \alpha )  + 2 \sin( \alpha )  \cos( \alpha )  \sin( \beta )  \cos( \beta )  + ( \cos {}^{2} ( \alpha )  -  \sin {}^{2} ( \alpha ) ) \sin {}^{2} ( \beta ) )

{k}^{2} ( \sin {}^{2} ( \alpha )  -  \sin {}^{2} ( \alpha ) \sin {}^{2} ( \beta )   + 2 \sin( \alpha )  \cos( \alpha )  \sin( \beta )  \cos( \beta )  +  \cos {}^{2} ( \alpha ) \sin {}^{2} ( \beta ) )

{k}^{2} ( \sin {}^{2} ( \alpha ) (1 -  \sin {}^{2} ( \beta ) ) + 2 \sin( \alpha )  \cos( \alpha )  \sin( \beta )  \cos( \beta )  +  \cos {}^{2} ( \alpha )  \sin {}^{2} ( \beta ) )

  {k}^{2} ( \sin {}^{2} ( \alpha )  \cos {}^{2} (  \beta )  + 2 \sin( \alpha )  \cos( \beta )  \cos( \alpha )  \sin( \beta )  +  \cos {}^{2} ( \alpha )  \sin {}^{2} ( \beta ) )

 {k}^{2}  {( \sin( \alpha )  \cos( \beta ) +  \cos( \alpha ) \sin( \beta )   )}^{2}

 {k}^{2}  \sin {}^{2} ( \alpha  +  \beta )

 {k}^{2} \sin {}^{2} (\pi -  \gamma )

 {k}^{2}  \sin {}^{2} ( \gamma )

( {k \sin( \gamma )) }^{2}

  {c}^{2}

= RHS

Hence Proved.

Similar questions