Math, asked by kkmarblesjaipur, 8 months ago

please solve this problem ​

Attachments:

Answers

Answered by rocky200216
6

\sf\underbrace{\red{SOLUTION:-}}

GIVEN :-

  • \bf{\cot{\theta}\:=\:{\dfrac{7}{8}}\:}

CALCULATION :-

(i) \bf{{\dfrac{(1+\sin{\theta})\:(1-\sin{\theta})}{(1+\cos{\theta})\:(1-\cos{\theta})}}\:}

 =  \frac{1 -  { \sin^2 \theta } }{1 -  { \cos^2 \theta } }  \\  \\  =   \frac{ { \cos^2 \theta } }{ { \sin^2 \theta } }  \\  \\  =  { \cot^2 \theta }  \\  \\  =  ({ \frac{7}{8} })^{2}  \\  \\  =  \frac{49}{64}

(ii) \bf{{\cot^2\theta}\:}

\bf{=\:({\dfrac{7}{8}})^2}

\bf{=\:\dfrac{49}{64}}

Answered by khadimul649
0

Step-by-step explanation:

here it is..... and the second answer is easy

Attachments:
Similar questions