Math, asked by ananya888833, 4 months ago

please solve this problem​

Attachments:

Answers

Answered by MagicalBeast
8

Given :

  • AB perpendicular to BC
  • angle(ACB) = 30°
  • BC = √(300) m

To find :

Length of AB

Solution :

As we can see closed figure ABC is a. triangle!

Also we are given that AB is perpendicular to BC, this gives that angle(ABC) = 90°. Therefore ∆ABC is a right angle triangle.

Now we can use trigonometric ratio.

We know that ,

 \sf \tan( \theta)  \:  =  \:  \dfrac{perpendicular}{base}

\sf \implies  \: \tan(30 {}^{\circ}) = \dfrac{AB}{BC}

\sf \implies  \: \tan(30 {}^{\circ}) = \dfrac{AB}{ \sqrt{300}  \: m}

\sf \implies  \:  \dfrac{1}{ \sqrt{3} }  \:  =  \: \dfrac{AB}{ \sqrt{300}  \: m}

\sf \implies  \:     \: {AB} \:  =  \sqrt{300}  \:  \times \dfrac{1}{ \sqrt{3} }  \:m

\sf \implies  \:     \: {AB} \:  =  \sqrt{\dfrac{300}{ 3 }}  \:    \:m

\sf \implies  \:     \: {AB} \:  =  \sqrt{100}  \:    \:m

\sf \implies  \:     \: {AB} \:  =  \pm \: 10 \:    \:m

Note - AB is a side and hence cannot be negetive

\sf \implies  \:     \: {AB} \:  =  \bold{10\:    \:m}

ANSWER :

Option A) 10m

Attachments:
Answered by Anonymous
27

\sf{Given}

•AB perpendicular to BC

•angle(ACB) = 30°

•BC = √(300) m

\sf{To ~find :}

•Length of AB

\sf{Solution :}

•As we can see closed figure ABC is a triangle!

So As We know that ,

\rm\tan( \theta) \: = \: \dfrac{perpendicular}{base}

\rm\implies \: \tan(30 {}^{\circ}) = \dfrac{AB}{BC}

 \rm\implies \: \tan(30 {}^{\circ}) = \dfrac{AB}{ \sqrt{300} \: m}

\rm\implies \: \dfrac{1}{ \sqrt{3} } \: = \: \dfrac{AB}{ \sqrt{300} \: m}

\rm \implies \: \: {AB} \: = \sqrt{300} \: \times \dfrac{1}{ \sqrt{3} }

\sf \implies \: \: {AB} \: = \sqrt{\dfrac{300}{ 3 }}  \\  \\ \sf \implies \: \: {AB} \: = \sqrt{100}  \\  \\ \sf \implies \: \: {AB} \: = \pm \: 10 \: \:m

\implies \: \: {AB} \: = \bold{10\: \:m}

ANSWER :

⊙ 10m is the answer!!

Similar questions