Math, asked by golukumar89698p2w4e7, 1 year ago

please solve this problem

Attachments:

Answers

Answered by GovindRavi
1
hope this help..........
Attachments:

golukumar89698p2w4e7: thanks bhai love u bhai u are genious...bro
golukumar89698p2w4e7: bhi whatsaap no de sakto ho kya
GovindRavi: Welcome... Sorry for the number dear...
Answered by siddhartharao77
1
Given :  \lim_{n \to 1}  (\frac{ \sqrt{x^2  - 1}+ \sqrt{x-1} }{ \sqrt{x^3 - 1} } )

= \ \textgreater \   \sqrt{ \frac{x^2 - 1}{x^3 - 1} } +  \sqrt{ \frac{x - 1}{x^3 - 1} }

= \ \textgreater \   \sqrt{  \frac{(x - 1)(x + 1)}{(x - 1)(x^2 + x +  1)} } +  \sqrt{ \frac{(x  -1)}{(x - 1)(x^2 + x + 1)} }

= \ \textgreater \   \sqrt{ \frac{x - 1}{x^2 + x + 1} } +  \sqrt{ \frac{1}{x^2 + x + 1} }

= \ \textgreater \   \lim_{n \to 1}  (\sqrt{ \frac{x + 1}{x^2 + x + 1} } +  \sqrt{ \frac{1}{x^2 + x + 1} }  )

= \ \textgreater \   \sqrt{ \frac{1 + 1}{1 + 1 + 1} } +  \sqrt{ \frac{1}{1 + 1 + 1} }

= \ \textgreater \   \sqrt{ \frac{2}{3} } +  \sqrt{ \frac{1}{3} }



Hope this helps!

siddhartharao77: :-)
golukumar89698p2w4e7: and is wrong bhai
siddhartharao77: Then what is the answer
golukumar89698p2w4e7: root 2 plus one by root 3
golukumar89698p2w4e7: thanks for trying
siddhartharao77: root 2/root 3 = root 2/3... and root 1 = 1
Similar questions