Math, asked by pakasrinivasrao8, 1 month ago

please solve this problem​

Attachments:

Answers

Answered by snehal2133
0

Answer:

hope it helps☺️☺️

Step-by-step explanation:

Substitutex=cos\alp,\alp∈[0:;π]

\displaystyle Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+

1−x

2

∣=

2

(2x

2

−1)\Leftright∣cos\alp+sin\alp∣=

2

(2cos

2

\alp−1)

\displaystyle |\N {\sqrt{2}}cos(\alp-\frac{\pi}{4})|=\N {\sqrt{2}}cos(2\alp )\Right \alp\in[0\: ;\: \frac{\pi}{4}]\cup [\frac{3\pi}{4}\: ;\: \pi]∣N

2

cos(\alp−

4

π

)∣=N

2

cos(2\alp)\Right\alp∈[0;

4

π

]∪[

4

;π]

1) \displaystyle \alp \in [0\: ;\: \frac{\pi}{4}]\alp∈[0;

4

π

]

\displaystyle cos(\alp -\frac{\pi}{4})=cos(2\alp )\dotscos(\alp−

4

π

)=cos(2\alp)…

2. \displaystyle \alp\in [\frac{3\pi}{4}\: ;\: \pi]\alp∈[

4

;π]

\displaystyle -cos(\alp -\frac{\pi}{4})=cos(2\alp )\dots−cos(\alp−

4

π

)=cos(2\alp)…

1

Answered by vilaspeshwa
0

Answer:

answer 2*45 you can do like this this is the answer

Similar questions