Math, asked by durgesh2729, 1 month ago

please solve this problem​

Attachments:

Answers

Answered by anindyaadhikari13
3

\texttt{\textsf{\large{\underline{Solution}:}}}

We have to find out the value of cos 45°.

Formula:

\dag\underline{\boxed{\tt  \cos(x) =  \sqrt{ \dfrac{1 +  \cos(2x) }{2} }  }}

So, we know that,

→ cos 90° = 0

So,

\tt \implies \cos(45^{\circ} ) =  \sqrt{ \dfrac{1 +  \cos(2 \times 45^{\circ} ) }{2}}

\tt \implies \cos(45^{\circ} ) =  \sqrt{ \dfrac{1 +  \cos(90^{\circ} ) }{2}}

\tt \implies \cos(45^{\circ} ) =  \sqrt{ \dfrac{1 + 0}{2}}

\tt \implies \cos(45^{\circ} ) =  \sqrt{ \dfrac{1}{2}}

\tt \implies \cos(45^{\circ} ) = \dfrac{1}{ \sqrt{2} }

So, the value of cos 45° is 1/√2.

\texttt{\textsf{\large{\underline{Answer}:}}}

  • cos 45° = 1/√2.

\texttt{\textsf{\large{\underline{Additionals}:}}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.

•••♪

Similar questions