Math, asked by kirtipari0022, 2 months ago

please solve this problem ​

Attachments:

Answers

Answered by VεnusVεronίcα
17

\bf \qquad  : \implies \:  LHS =  { \bigg \lgroup1 + tan \alpha  \: tan \beta  \bigg \rgroup}^{2}  +   { \bigg \lgroup tan \alpha  - tan \beta  \bigg \rgroup}^{2}  =  {sec}^{2}  \alpha  \:  {sec}^{2}  \beta

 \:

Expanding the LHS using (a + b)² = a² + b² + 2ab and (a - b)² = a² + b² - 2ab :

 \bf \qquad :  \implies \:   \bigg \lgroup1 +  {tan}^{2}  \alpha  \:  {tan}^{2}  \beta  + 2 \: tan \alpha  \: tan \beta \bigg \rgroup  +  \bigg \lgroup {tan}^{2}  \alpha  +  {tan}^{2}  \beta  - 2 \: tan \alpha  \: tan \beta  \bigg \rgroup

 \:

Removing the brackets and putting like terms together :

 \bf \qquad  : \implies \:  1 +  {tan}^{2}  \alpha  \:  {tan}^{2}  \beta  +  {tan}^{2}  \alpha  +  {tan}^{2}  \beta  + 2 \: tan \alpha  \: tan \beta  - 2 \: tan \alpha  \: tan \beta

 \:

Cancelling the term 2 tanα tanβ - 2 tanα tanβ :

 \bf \qquad :  \implies \: 1 +  {tan}^{2}  \alpha  \:  {tan}^{2}  \beta  +  {tan}^{2}  \alpha  +  {tan}^{2}  \beta   \: +  \:  \cancel{2 \: tan \alpha  \: tan \beta }  \: -  \:  \cancel{2 \: tan \alpha  \: tan \beta }

 \:

The simplified form will now be :

 \bf \qquad:  \implies \: 1 +  {tan  }^{2}   \alpha \:  {tan}^{2}  \beta  +  {tan}^{2}  \alpha  +  {tan}^{2}  \beta

 \:

From the above form, removing the common term (tan²β +1) :

 \bf \qquad : \implies \:  {tan}^{2}  \alpha  \:  \bigg \lgroup {tan   }^{2}   \beta + 1 \bigg \rgroup + 1 \:  \bigg  \lgroup1 +  {tan}^{2}  \beta  \bigg \rgroup

 \:

We get two factors as follows :

 \bf \qquad :  \implies \:  \bigg \lgroup {tan}^{2}  \alpha  + 1 \bigg \rgroup \:  \bigg \lgroup1 +  {tan}^{2}  \beta  \bigg \rgroup

 \:

We know that — (tan²θ + 1) = sec²θ, so :

 \bf \qquad  : \implies \:  {sec}^{2}  \alpha  \:  {sec}^{2}  \beta  = RHS

 \:

~

★ Henceforth, proved!

 \\

_________________________

Note : Swipe the screen from left to right in case you are using the app on your mobile.

Similar questions