Math, asked by ayshabegam53, 1 month ago

please solve this problem​

Attachments:

Answers

Answered by abhi569
6

Answer:

- 24√3

Question: If x = 2 - √3 , find the value of (x - 1/x)³.

Step-by-step explanation:

 \sf{Given, \:  x = 2 - √3. \: \: \: So,  \: \frac{1}{x} = \frac{1}{2 - √3} }

 \sf{Rationalizing  \: the \:  denominator : } \\  \sf{ \implies\frac{1}{x} = \frac{1}{2 - √3} \times  \frac{2  +  \sqrt{3} }{2 +  \sqrt{3} }  } \\  \\ \sf{ \implies\frac{1}{x} = \frac{2  +  \sqrt{3} }{(2 -  \sqrt{3} )(2 +  \sqrt{3}) }  } \\  \\ \sf{ \implies\frac{1}{x} = \frac{2  +  \sqrt{3} }{(2 ){}^{2}  -  (\sqrt{3} ) {}^{2} }  } \\  \\   \sf{ \implies \frac{1}{x} =  \frac{2 +  \sqrt{3} }{4 - 3} } \\  \\  \sf{  \implies\frac{1}{x} = 2 +  \sqrt{3} }

 \sf{Therefore,}

 => (x - \frac{1}{x})^3

 => ( (2 - \sqrt3) - (2 + \sqrt3) )^3

=> ( - \sqrt3 - \sqrt3 )^3

=> ( - 2\sqrt3 )^3

=> - 24\sqrt3

Answered by kamalhajare543
26

Answer:

Given :

x = 2 -√{3}

To find :

 \red{\boxed{ \bigg(x - \frac{1}{x}  \bigg) {}^{3}}}

Solution :

\begin{gathered} \sf \: x = 2 - \sqrt{3} \\ \\  \sf \: \frac{1}{x} = \frac{1}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ \\ \ \sf \:  \frac{1}{x} = \frac{2 + \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2} } \\ \\  \sf \: \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \\  \sf \: \frac{1}{x} = 2 + \sqrt{3} \end{gathered}

Now,

\begin{gathered} \sf \: x - \frac{1}{x} = 2 - \sqrt{3} - 2 - \sqrt{3} \\ \\  \sf \: x - \frac{1}{x} = - 2\sqrt{3} \end{gathered}

And,

\begin{gathered}\bigg(x - \frac{1}{x} \bigg) {}^{3} \\ \\ - \bigg(2 \sqrt{3} \bigg) {}^{3} \\ \\ \therefore \boxed {\bold{ \pink{- 24 \sqrt{3}}}}\end{gathered}

_____

Similar questions