Math, asked by krishnanandan0101, 9 days ago

please solve this problem​

Attachments:

Answers

Answered by NITESH761
2

Answer:

\rm   = 7:16

Step-by-step explanation:

We know that,

\boxed{\rm a_n = a +(n-1)d}

We have,

\rm \dfrac{a_n}{a'_n} = \dfrac{a+(n-1)d}{a'+(n-1)d'}

Multiply numerator and denominator by 2,

\rm  = \dfrac{2(a+(n-1)d)}{2(a'+(n-1)d')}

\rm  = \dfrac{2a+2(n-1)d}{2a'+2(n-1)d'}

\rm  = \dfrac{2a+(2n-2)d}{2a'+(2n-2)d'}

\rm  = \dfrac{2a+\{ (2n-1)-1 \} d}{2a'+\{ (2n-1)-1 \} d'}

\rm  = \dfrac{S_{2n-1}}{S_{2n-1}}

\rm   \dfrac{S_{2n-1}}{S_{2n-1}} = \dfrac{3n+8}{7n+15}

Put the value of n as 2n-1

\rm   = \dfrac{3(2n-1)+8}{7(2n-1)+15}

Put the value of n as 12

\rm   = \dfrac{3(2×12-1)+8}{7(2×12-1)+15}

\rm   = \dfrac{69+8}{161+15}

\rm   = \dfrac{77}{176}

\rm   = \dfrac{7}{16}

Similar questions