Math, asked by misskritimishra, 1 year ago

please solve this problem​

Attachments:

Answers

Answered by Angel12122003
2

Answer:

Step-by-step explanation:

Please mark it as the brainliest !!

Attachments:

7777777RAM: hiiiii
7777777RAM: hloo
Answered by shadowsabers03
2

\boxed{\ \ \ \ \ \boxed{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bold{LENGTH=17\ \ \ ; \ \ \ BREADTH=9}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\ \ \ \ \ }

 

Let the length and breadth be x and y respectively.

(x-5)(y+3)=xy-9 \\ \\ xy+3x-5y-15=xy-9 \\ \\ 3x-5y-15=-9 \\ \\ 3x-5y=-9+15 \\ \\ 3x-5y=6\ \ \ \ \ \longrightarrow\ \ \ \ \ (1)

(x+3)(y+2)=xy+67 \\ \\ xy+2x+3y+6=xy+67 \\ \\ 2x+3y+6=67 \\ \\ 2x+3y=67-6 \\ \\ 2x+3y=61\ \ \ \ \ \longrightarrow\ \ \ \ \ (2)

(1) \times 3 \\ \\ =3(3x-5y)=3 \times 6 \\ \\ =9x-15y=18\ \ \ \ \ \longrightarrow\ \ \ \ \ (3) \\ \\ \\ (2) \times 5 \\ \\ =5(2x+3y)=5 \times 61 \\ \\ =10x+15y=305\ \ \ \ \ \longrightarrow\ \ \ \ \ (4) \\ \\ \\

(3)+(4) \\ \\ = (9x-15y)+(10x+15y)=18+305 \\ \\ =9x-15y+10x+15y=323 \\ \\ =19x=323 \\ \\ \\ x=\bold{17}

From (2),

2x+3y=61 \\ \\ 2 \times 17 + 3y=61 \\ \\ 34+3y=61 \\ \\ 3y=61-34 \\ \\ 3y=27 \\ \\ \\ y=\bold{9}

∴ Length and breadth of the rectangle are 17 units and 9 units respectively.

Please mark it as the brainliest if this helps.

Please ask me if you've any doubts.

Thank you. :-))

               

Similar questions