Math, asked by mukherjiashish3, 1 year ago

please solve this problem and do not spam and give correct answer please this is urgent ​

Attachments:

Answers

Answered by tahseen619
3

Answer:

 \dfrac{ {2}^{5}  \times 7  }{ {3}^{4} }

Step-by-step explanation:

Solution:

{ (\frac{16}{81}) }^{ \frac{3}{4} }   \times  { (\frac{49}{9}) }^{ \frac{3}{2} }    \div  {( \frac{343}{216} )}^{ \frac{2}{3} }  \\  \\    \sqrt[4] {  {(\frac{16}{81} )}^{3} }  \times  \sqrt[2]{ { (\frac{49}{9} )}^{3} }    \div  \sqrt[3] { {(\frac{343}{216}  )}^{2} }  \\  \\  { (\frac{2}{3} )}^{3}  \times   { (\frac{7}{3}) }^{3}  \div  { (\frac{7}{6}) }^{2} \\  \\  \frac{ {2}^{3} }{ {3}^{3} }  \times  \frac{ {7}^{3} }{ {3}^{3} }  \times  \frac{ {6}^{2} }{ {7}^{2} }  \\  \\   { {2}^{3} }  \times  \frac{ {7}^{(3 - 2)} }{ {3}^{(3 + 3)} }  \times { {(2 \times 3)}^{2} } \\  \\ 2 {}^{3}    \times \frac{7}{ {3}^{6} }  \times 2 {}^{2}  \times  {3}^{2}  \\  \\  {2}^{(3 + 2)}  \times  \frac{7}{ {3}^{(6 - 2)} }  \\  \\  \frac{ {2}^{5}  \times 7}  { { 3}^{4} }

Using laws of Indices

 {a}^{x}  \times  {a}^{2}  =  {a}^{x + 2}  \\  \\  {x}^{5}  \times  \frac{1}{ {x}^{8} }  =   \frac{1}{ {x}^{(8 - 5)} }  \\  \\  {x}^{ \frac{1}{5} }  =  \sqrt[5]{x}

Answered by simmy12345
1

i hope this help you

please mark me BRAINLIST

Attachments:
Similar questions