Math, asked by Tii001002, 1 year ago

Please solve this problem by using x²-y² identity

(x+y+z)² -(x+y-z)²

Answers

Answered by rohitkumargupta
1

\large{\mathbf{HELLO \:  \:  DEAR,}}<br /><br /> \\  \\  \\ \mathbf{(x^2 - y^2) = (x - y)(x + y)}<br /><br /><br />\\ \\ \mathbf{[(x + y )+ z]^2 - [(x + y) - z]^2}<br /><br />\\ \\ \mathbf{[x^2 + y^2 + 2xy + z^2] - [x^2 + y^2 + 2xy - z^2]}\\ \\<br /><br />\mathbf{[x^2 - x^2 + y^2 - y^2 + 2xy - 2xy + z^2 + z^2]}<br /><br />\\ \\ \mathbf{[ 2z^2]}<br /><br /><br /> \\  \\  \\ \large{\mathbf{\underline{I \:  \:  HOPE  \:  \: ITS  \:  \: HELP \:  \:  YOU  \:  \: DEAR, \:  \: THANKS}}}
Answered by Anonymous
0
Heya

As\:we\:know:
x^2-y^2=(x+y)(x-y)

Given\:problem: (x+y+z)^2-(x+y-z)^2

SOLUTION:-
 (x+y+z)^2-(x+y-z)^2
=[(x+y)+z]^2-[(x+y)-z]^2
=(x^2+2xy+y^2+z^2)-(x^2+2xy+y^2+z^2
=x^2+2xy+y^2+z^2-x^2-2xy-y^2-z^2
=x^2-x^2+2xy-2xy+y^2-y^2+z^2-z^2
=0
Similar questions