Math, asked by sandeshsharma9147, 7 hours ago

Please solve this problem
Evaluate the following limits
lim x->0 x/sin^ -1 x​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{x}{ {sin}^{ - 1}x}

To evaluate this limit, we use Method of Substitution

So, Substitute

 \red{\rm :\longmapsto\: {sin}^{ - 1}x = y}

 \red{\rm :\longmapsto\: x = {sin}y}

 \red{\rm :\longmapsto\: As \: x \:  \to \: 0, \: so \: y \:  \to \: 0}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 0}\rm  \frac{siny}{ {sin}^{ - 1}(siny) }

\rm \:  =  \: \displaystyle\lim_{y \to 0}\rm  \frac{siny}{ y }

\rm \:  =  \: 1

Hence,

 \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{x}{ {sin}^{ - 1}x}  = 1} \:  \:  \:  \:  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga\:  \:  \:  \:  \:  \: }}

Answered by HarshitJaiswal2534
1

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{x}{ {sin}^{ - 1}x}

To evaluate this limit, we use Method of Substitution

So, Substitute

 \blue{\rm :\longmapsto\: {sin}^{ - 1}x = y}

 \blue{\rm :\longmapsto\: x = {sin}y}

 \blue{\rm :\longmapsto\: As \: x \:  \to \: 0, \: so \: y \:  \to \: 0}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 0}\rm  \frac{siny}{ {sin}^{ - 1}(siny) }

\rm \:  =  \: \displaystyle\lim_{y \to 0}\rm  \frac{siny}{ y }

\rm \:  =  \: 1

Hence,

 \green{\rm\implies \:\boxed{\tt{ \:  \:  \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{x}{ {sin}^{ - 1}x}  = 1} \:  \:  \:  \:  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1 \:  \:  \:  \:  \:  \: }}

\boxed{\tt{  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga\:  \:  \:  \:  \:  \: }}

Similar questions