please solve this problem fast
Attachments:
Answers
Answered by
0
hey!
answer is in the attachment.
hope it helps u :)
@princessemaanu2006
answer is in the attachment.
hope it helps u :)
@princessemaanu2006
Attachments:
Answered by
0
rationalizing x
x=[{√(p+q)+√(p-q)}/ {√(p+q)-√(p-q)}]× [{√(p+q)+√(p-q)}/ {√(p+q)+√(p-q)}]
x= {√(p+q)+√(p-q)}^2/(p+q)-(p-q)
x= {√(p+q)+√(p-q)}^2/2q
putting the value of x in the equation
qx^2 - 2px + q
=q×[{√(p+q)+√(p-q)}^2/2q] - 2p×[{√(p+q)+√(p-q)}^2/2q] + q
=q×[p+q+p-q+2√{(p+q)(p-q)}]/2q - 2p×[{√(p+q)+√(p-q)}^2/2q] + q
=q×[p+√{(p^2-q^2)}]^2/q - 2p× [2p+2√{(p^2-q^2)}]/2q +q
=[p+√(p^2-q^2)]^2/q - 2p{p+√(p^2-q^2)}/q + q
=[{p^2+p^2-q^2+2p√(p^2-q^2)}-{2p^2+2p√(p^2-q^2)}]/q+q
=-q^2/q+q
=-q+q
=0
hope this helps
plz mark me as brainliest.....
x=[{√(p+q)+√(p-q)}/ {√(p+q)-√(p-q)}]× [{√(p+q)+√(p-q)}/ {√(p+q)+√(p-q)}]
x= {√(p+q)+√(p-q)}^2/(p+q)-(p-q)
x= {√(p+q)+√(p-q)}^2/2q
putting the value of x in the equation
qx^2 - 2px + q
=q×[{√(p+q)+√(p-q)}^2/2q] - 2p×[{√(p+q)+√(p-q)}^2/2q] + q
=q×[p+q+p-q+2√{(p+q)(p-q)}]/2q - 2p×[{√(p+q)+√(p-q)}^2/2q] + q
=q×[p+√{(p^2-q^2)}]^2/q - 2p× [2p+2√{(p^2-q^2)}]/2q +q
=[p+√(p^2-q^2)]^2/q - 2p{p+√(p^2-q^2)}/q + q
=[{p^2+p^2-q^2+2p√(p^2-q^2)}-{2p^2+2p√(p^2-q^2)}]/q+q
=-q^2/q+q
=-q+q
=0
hope this helps
plz mark me as brainliest.....
Similar questions