please solve this problem friends
Attachments:
Answers
Answered by
2
Here,
RHS=cosecA+cotA
LHS=(cosA-sinA+1)/(cosA+sinA-1)
LHS=(cosA-sinA+1)/(cosA+sinA-1)×(cosA-sinA+1)/(cosA-sinA+1)
LHS=(cos²A-cosAsinA+cosA-cosAsinA+sin²A-sinA+cosA-sinA+1)/(cos²A-cosAsinA+cosA+cosAsinA-sin²A+sinA-cosA+sinA-1)
LHS=(2-2sinAcosA+2cosA-2sinA)/(cos²A-sin²A+2sinA-1)
LHS=2(1-sinAcosA+cosA-sinA)/(1-sin²A-sin²A+2sinA-1)
LHS=2{(1-sinA)+cosA(1-sinA)}/(2sinA-2sin²A)
LHS=2(1-sinA)(1+cosA)/{2sinA(1-sinA)}
LHS{(1+cosA)/sinA
LHS=1/sinA+cosA/sinA
LHS=cosecA+cotA
LHS=RHS
Hence proved.
RHS=cosecA+cotA
LHS=(cosA-sinA+1)/(cosA+sinA-1)
LHS=(cosA-sinA+1)/(cosA+sinA-1)×(cosA-sinA+1)/(cosA-sinA+1)
LHS=(cos²A-cosAsinA+cosA-cosAsinA+sin²A-sinA+cosA-sinA+1)/(cos²A-cosAsinA+cosA+cosAsinA-sin²A+sinA-cosA+sinA-1)
LHS=(2-2sinAcosA+2cosA-2sinA)/(cos²A-sin²A+2sinA-1)
LHS=2(1-sinAcosA+cosA-sinA)/(1-sin²A-sin²A+2sinA-1)
LHS=2{(1-sinA)+cosA(1-sinA)}/(2sinA-2sin²A)
LHS=2(1-sinA)(1+cosA)/{2sinA(1-sinA)}
LHS{(1+cosA)/sinA
LHS=1/sinA+cosA/sinA
LHS=cosecA+cotA
LHS=RHS
Hence proved.
Similar questions