Math, asked by satyamgupta50, 1 month ago

please solve this problem in​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

To  \: prove =  \\  \frac{tan \: θ + sec \: θ - 1}{tan \: θ - sec \: θ + 1}  =  \frac{1 + sin \:θ }{cos \: θ}  \\  \\ so \: let \:  \\ LHS =  \frac{tan \: θ + sec \:θ - 1 }{tan \: θ - sec \: θ + 1}  \\  \\ RHS =  \frac{1 + sin \: θ}{cos \:θ }  \\  \\

so \: considering  \:  LHS \\  =  \frac{tan \: θ + sec \:θ - 1 }{tan \:θ - sec \: θ + 1}  \\  \\ so \: conjugate \: of \: tan \: θ - sec \: θ + 1 \: is \: tan \: θ + sec \: θ - 1 \\ so \: by \: conjugate \: method \\ we \: get \\  =  \frac{tan \: θ + sec \: θ - 1}{tan \:θ - sec \:θ + 1  }  \:  \times  \:  \frac{tan \: θ + sec \:θ - 1 }{tan \: θ + sec \: θ - 1}  \\  \\  =  \frac{(tan \:θ + sec \: θ - 1) {}^{2}  }{(tan \:θ - sec \: θ + 1)(tan \: θ + sec \:θ - 1)  }  \\  \\ so \: here \: (tan \: θ + sec \: θ - 1) {}^{2}  \: is \: in \: form \: (a + b - c) {}^{2}  \: and \\ (tan \: θ - sec \: θ + 1)(tan \: θ + sec \: θ - 1) \: is \: in \: from \: (a - b + c)(a + b - c) \\ so \: we \: know \: that \\ (a + b - c) {}^{2}  = a { }^{2}  + b {}^{2}  + c {}^{2}  + 2ab +  - 2ac - 2bc \\  \\ (a - b + c)(a + b - c) = a {}^{2}  - b {}^{2}  - c {}^{2}  + 2bc \\  \\ hence \: accordingly \\  =  \frac{tan {}^{2} θ + sec {}^{2} θ + 1  + 2.tan \:θ.sec \:θ - 2.sec \: θ - 2.tan \:  θ }{tan {}^{2} \: θ - sec {}^{2}θ - 1 + 2.sec \:   θ}  \\  \\  =    \frac{sec {}^{2}  \:θ + sec {}^{2} \:  θ + 2.tan \: θ.sec \: θ - 2.tan \: θ - 2.sec \: θ}{sec {}^{2}  \:θ - 1 - sec {}^{2}  \:θ - 1 + 2.sec \: θ }  \\  \\ since \: 1 + tan {}^{2}  \: θ = sec {}^{2} θ

 =  \frac{2.sec {}^{2}  \: θ  \:  +  \: 2.tan \: θ.sec \:θ - 2.tan \: θ - 2.sec \:θ }{ - 2 + 2.sec \: θ}  \\  \\  =  \frac{2.sec {}^{2}  \: θ - 2.sec \: θ + 2.tan \:θ.sec \: θ - 2.tan \: θ}{2(sec \:θ - 1) }  \\  \\  =  \frac{2.sec \: θ(sec \:θ - 1) + 2.tan \:θ(sec \: θ - 1) }{2(sec \:θ - 1) }  \\  \\  =  \frac{(2.sec \:θ + 2.tan \:θ)(sec \:  θ - 1)}{ 2(sec \:θ - 1) }  \\  \\  =  \frac{2(sec \:θ + tan \: θ)(sec \: θ - 1)}{2(sec \: θ - 1)}  \\  \\  = sec \: θ + tan \: θ

now \: we \: know \: that \\  sec \:  θ =  \frac{1}{cos \: θ}  \\  \\ tan \: θ =  \frac{sin \: θ}{cos \: θ}  \\  \\ hence \: accordingly \\  \\  =  \frac{1}{cos \:θ }  +  \frac{sin \:θ }{cos \: θ}  \\  \\  =   \frac{1 + sin \:θ }{cos \:θ }  \\  \\ thus \: LHS=RHS \\ hence \: proved

Similar questions