Math, asked by Noah11, 1 year ago

Please solve this problem in a different sheet!! Thank you in advance for your help!!

Attachments:

Answers

Answered by siddhartharao77
12
Given : a =  \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 } , b =  \frac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 }

(1).

 a =  \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 }

 \frac{ (\sqrt{2} - 1)( \sqrt{2} - 1)  }{( \sqrt{2} + 1)( \sqrt{2} - 1)  }

 \frac{( \sqrt{2} - 1)^2 }{( \sqrt{2})^2 - (1)^2 }

 \frac{( \sqrt{2} - 1)^2 }{1}

( \sqrt{2} - 1)^2

( \sqrt{2} )^2 - 2 \sqrt{2} + 1

2 - 2 \sqrt{2} + 1

3 - 2 \sqrt{2}



(2) 

b =  \frac{ \sqrt{2} + 1 }{ \sqrt{2}  - 1 }

 \frac{( \sqrt{2}  + 1)( \sqrt{2} + 1) }{( \sqrt{2} - 1)( \sqrt{2} + 1)  }

 \frac{( \sqrt{2} + 1)^2 }{( \sqrt{2})^2 - 1 }

( \sqrt{2} + 1)^2

( \sqrt{2} )^2 + 1 * 2 \sqrt{2} + 1

2 + 2 \sqrt{2} + 1

3 + 2 \sqrt{2}


Now,

a^2 + b^2 - 4ab = (3 - 2 \sqrt{2} )^2 + (3 + 2 \sqrt{2} )^2 - 4 (3 - 2 \sqrt{2} )(3 + 2 \sqrt{2} )

(17 - 12 \sqrt{2} ) + (12 \sqrt{2} + 17) - (4)

17 + 17 - 4

30.


Hope this helps!

siddhartharao77: :-)
siddhartharao77: Any doubts Ask me..
Noah11: ok
TheAishtonsageAlvie: great bhaiya !!
Noah11: Yup
Answered by Anonymous
6
Hi,

Please see the attached file!


Thanks
Attachments:

TheAishtonsageAlvie: great pratham !!
TheAishtonsageAlvie: bhai
Anonymous: Thank you bro/sister
Noah11: r u the real
Noah11: raksha gopal
Noah11: tell
Similar questions