Math, asked by yashaswininamani4, 1 month ago

please solve this problem
please don't spam ​

Attachments:

Answers

Answered by MysticSohamS
5

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \\  \frac{sin {}^{2}  \: \frac{\pi}{18}  + sin {}^{2}  \:  \frac{\pi}{9}   + sin {}^{2}   \:  \frac{7\pi}{18}  + sin {}^{2}  \:  \frac{4\pi}{9} }{cos {}^{2}  \:  \frac{\pi}{18}  + cos {}^{2}  \:  \frac{\pi}{9}  + cos {}^{2} \:  \frac{7\pi}{18} + cos {}^{2}    \:  \frac{4\pi}{9} }  \\  \\  =  \frac{sin {}^{2} . \frac{180}{18}  + sin {}^{2} . \frac{180}{9}  + sin {}^{2}. \frac{7 \times 180}{18}   + sin {}^{2}  \:  \frac{4 \times 180}{9} }{cos {}^{2}. \frac{180}{18}   + cos {}^{2} . \frac{180}{9}  + cos {}^{2} . \frac{7 \times 180}{18}  + cos {}^{2} . \frac{4 \times 180}{9} }  \\  \\

 =  \frac{sin {}^{2} .10 + sin {}^{2} .20 + sin {}^{2}.(7 \times 10  ) + sin {}^{2} .(4 \times 20)}{cos {}^{2}.10 + cos {}^{2}.20 + cos {}^{2} .(7 \times 10) + cos {}^{2}  .(4 \times 20) }  \\  \\  =  \frac{sin {}^{2}.10 +  sin {}^{2}.20 + sin {}^{2}.70 + sin {}^{2}  .80 }{cos {}^{2}.10 + cos {}^{2} .20 + cos {}^{2} .70 + cos {}^{2}.80  }  \\  \\

so \: according \: to \: complementary \: amgle \: relation \\ we \: know \: that \\ cos \: (90 - 	θ) = sin \: 	θ \\ hence \: then \\ cos \: 10 = sin(90 - 10) = sin.80 \\  \\ cos \: 20 = sin(90 - 20) = sin.70 \\  \\ cos \: 80 = sin \: (90 - 80) = sin .10 \\  \\ cos \: 70 = sin \: (90 - 70) = sin.20

hence \: then \: accordingly \\  =  \frac{sin {}^{2} .10 + sin {}^{2} .20 + sin {}^{2} .70 + sin {}^{2}.80 }{sin {}^{2}.80 +  sin {}^{2}.70 + sin {}^{2}  .20 + sin {}^{2} .10}  \\  \\  =  \frac{sin {}^{2} .10 + sin {}^{2} .20 + sin {}^{2} .70 + sin {}^{2} .80}{ sin {}^{2} .10 + sin {}^{2} .20 + sin {}^{2} .70 + sin {}^{2} .80 }  \\  \\  = 1

Answered by Anonymous
28

Question:

  • Find the value of the given trignometric expression

Answer:

  • The value of the trignometric expression equals 1  

Explanation:

Given expression :

\bigstar \; \; {\underline{\boxed{\bf{ \dfrac{sin^2\dfrac{\pi }{18} + sin^2\dfrac{\pi }{9} +  sin^2\dfrac{7 \pi }{18} + sin^2\dfrac{\pi }{9} }{cos^2\dfrac{\pi }{18} + cos^2\dfrac{\pi }{9} +  cos^2\dfrac{7 \pi }{18} +cos^2\dfrac{\pi }{9}} }}}}      

To Find:

  • The value of the expression given above  

Required Solution:

  • Simplifying the expression

As we know that ,  

  • The value of π in radian system is 180 °

{\purple{\bigstar \; \; {\underline {\bf{ We \; can \; write \; the \; expression \; as : }}}}} \\ \\

{ : \implies } \tt \dfrac{sin^2\dfrac{\pi }{18} + sin^2\dfrac{\pi }{9} +  sin^2\dfrac{7 \pi }{18} + sin^2\dfrac{4\pi }{9} }{cos^2\dfrac{\pi }{18} + cos^2\dfrac{\pi }{9} +  cos^2\dfrac{7 \pi }{18} +cos^2\dfrac{4\pi }{9}} \\ \\ \\ \\ { : \implies } \tt  \dfrac{sin^2\dfrac{180}{18} + sin^2\dfrac{180 }{9} +  sin^2\dfrac{7 \times 180 }{18} + sin^2\dfrac{4 \times 180 }{9} }{cos^2\dfrac{180 }{18} + cos^2\dfrac{180}{9} +  cos^2\dfrac{7 \times 180 }{18} +cos^2\dfrac{ 4 \times 180}{9}}  

\\ \\ {\purple{\bigstar \; \; {\underline {\bf{Simplifying \; the \; angles : }}}}} \\ \\

{ : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(7 \times 10)+ \sin^2(4 \times 20) }{\cos^2(10)+ \cos^2(20)+ \cos^2(7 \times 10) +\cos^2 ( 4 \times 20)} \\ \\ \\ \\ { : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(70)+ \sin^2(80}{\cos^2(10)+ \cos^2(20)+ \cos^2(70 ) +\cos^2 ( 80)}

\\ \\ {\purple{\bigstar \; \; {\underline {\bf{Converting \; the \; cos \; functions \; to \; sin : }}}}}  

★  According to the Quadrant relation ,

  • We know that the angles which lie in the first quadrant are positive and their cos function changes to sin and the angle would be converted to such form mentioned below

{\pink{\bigstar \; \; {\boxed{\tt{\cos ( \tt 90 -\alpha ) = \sin ( \alpha )}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

Now let's convert them from cos to sin

{\pink{\bf { cos ( 90 - 80 ) = sin (80) }}}

{\blue{\bf { cos ( 90 - 20 ) = sin ( 70) }}}  

{\red{\bf { cos ( 90 - 20 ) = sin (20) }}}  

{\purple{\bf { cos ( 90 - 10 ) = sin (10) }}}  

\\ \\ {\purple{\bigstar \; \; {\underline {\bf{Substituting \; the \; values \; we \; get : }}}}} \\ \\

{ : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(70)+ \sin^2(80)}{\cos^2(10)+ \cos^2(20)+ \cos^2(70 ) +\cos^2 ( 80)} \\ \\ \\ \\ { : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(70)+ \sin^2(80)}{\sin^2(80)+ \sin^2(70)+ \sin^2(20 ) +\sin^2 ( 10)}

{\purple{\bigstar \; \; {\underline {\bf{Grouping \; the \; values \; we \; get : }}}}} \\ \\

{ : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(70)+ \sin^2(80)}{\sin^2(80)+ \sin^2(70)+ \sin^2(20 ) +\sin^2 ( 10)} \\ \\ \\ \\ { : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(70)+ \sin^2(80)}{\sin^2(10)+ \sin^2(20)+ \sin^2(70 ) +\sin^2 ( 80)}    

{\purple{\bigstar \; \; {\underline {\bf{Factorising \; the \; values \; we \; get : }}}}} \\ \\  

{ : \implies } \tt \dfrac{\sin^2 (10)+ \sin^2(20)+  \sin^2(70)+ \sin^2(80)}{\sin^2(10)+ \sin^2(20)+ \sin^2(70 ) +\sin^2 ( 80)} \\ \\ \\

{ : \implies } \tt \dfrac{sin^2 {\cancel{( 10 + 20 + 70 + 80)}} }{sin^2 \cancel{( 10 + 20 + 70 + 80 )}} \\ \\ \\

{ : \implies } \tt \cancel\dfrac{sin^2}{sin^2} \\ \\ \\

{ : \implies } \tt 1    

Therefore Solved :

{\therefore \; \; {\underline{\boxed{\frak{ \dfrac{sin^2\dfrac{\pi }{18} + sin^2\dfrac{\pi }{9} +  sin^2\dfrac{7 \pi }{18} + sin^2\dfrac{\pi }{9} }{cos^2\dfrac{\pi }{18} + cos^2\dfrac{\pi }{9} +  cos^2\dfrac{7 \pi }{18} +cos^2\dfrac{\pi }{9}} = 1 }}} \;\bigstar}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions