Math, asked by tummakeerthana19, 2 months ago

please solve this problem...​prove the problem

Attachments:

Answers

Answered by Asterinn
13

Given :-

 \displaystyle \lim_{ \rm \: x \to \: 0}{ \frac{ \sqrt{x + 1}  - 1}{ \rm \: x} } =  \dfrac{1}{2}

To prove :

L.H.S = R.H.S

Proof :

R.H.S = 1/2

 \rm L.H.S = \displaystyle \lim_{ \rm \: x \to \: 0}{ \frac{ \sqrt{x + 1}  - 1}{ \rm \: x} }

 \rm \implies\displaystyle \lim_{ \rm \: x \to \: 0}{ \dfrac{ \sqrt{x + 1}  - 1}{ \rm \: x} } \\   \\ \\ \rm \implies\displaystyle \lim_{ \rm \: x \to \: 0}{ \dfrac{ \sqrt{x + 1}  - 1}{ \rm \: x} } \times \dfrac{ \sqrt{x + 1}   + 1}{ \rm \:\sqrt{x + 1}   + 1 }  \\   \\ \\ \rm \implies\displaystyle \lim_{ \rm \: x \to \: 0}{ \dfrac{  \rm{x + 1}  - 1}{ \rm \: x \: (\rm \:\sqrt{x + 1}   + 1 )}} \\   \\ \\ \rm \implies\displaystyle \lim_{ \rm \: x \to \: 0}{ \dfrac{  \rm{x }}{ \rm \: x \: (\rm \:\sqrt{x + 1}   + 1 )}} \\   \\ \\ \rm \implies\displaystyle \lim_{ \rm \: x \to \: 0}{ \dfrac{  \rm{1}}{ \rm \: \: (\rm \:\sqrt{x + 1}   + 1 )}} \\   \\ \\ \rm \implies\displaystyle { \dfrac{  \rm{1}}{ \rm \:  \: (\rm \:\sqrt{0 + 1}   + 1 )}} \\   \\ \\ \rm \implies\displaystyle { \dfrac{  \rm{1}}{ \rm \:  \: (\rm \:1   + 1 )}} \\   \\ \\ \rm \implies\displaystyle { \dfrac{  \rm{1}}{  \rm2 }}  \\  \\  \\   \therefore\displaystyle \lim_{ \rm \: x \to \: 0}{ \frac{ \sqrt{x + 1}  - 1}{ \rm \: x} } =  \dfrac{1}{2}

L.H.S = R.H.S

hence proved

Answered by INSIDI0US
81

Step-by-step explanation:

 \large\bf{\underline{\underline{We\ have:-}}}

 \bf : \implies {\displaystyle \lim_{\bf x \to \ 0}\ \bf \dfrac{\sqrt{x\ +\ 1}\ -\ 1}{x}\ =\ \dfrac{1}{2}}

 \large\bf{\underline{\underline{To\ prove:-}}}

 \bf : \implies {L.H.S\ =\ R.H.S}

 \large\bf{\underline{\underline{Solution:-}}}

 \bf : \implies {L.H.S\ =\ \displaystyle \lim_{\bf x \to \ 0}\ \bf \dfrac{\sqrt{x\ +\ 1}\ -\ 1}{x}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to \ 0}\ \bf \dfrac{\sqrt{x\ +\ 1}\ -\ 1}{x}\ \times\ \dfrac{\sqrt{x\ +\ 1}\ +\ 1}{\sqrt{x\ +\ 1}\ +\ 1}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to \ 0}\ \bf \dfrac{x\ +\ 1\ -\ 1}{x\ (\sqrt{x\ +\ 1}\ +\ 1)}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to \ 0}\ \bf \dfrac{x}{x\ (\sqrt{x\ +\ 1}\ +\ 1)}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to \ 0}\ \bf \dfrac{1}{x\ (\sqrt{x\ +\ 1}\ +\ 1)}} \\ \\ \\ \bf : \implies {\dfrac{1}{(\sqrt{0\ +\ 1}\ +\ 1)}} \\ \\ \\ \bf : \implies {\dfrac{1}{(1\ +\ 1)}} \\ \\ \\ \bf : \implies {\purple{\underline{\boxed{\bf R.H.S\ =\ \dfrac{1}{2}}}}}\bigstar

⠀⠀⠀

\begin{gathered}\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar Hence\ Proved \bigstar}}}}}\mid}\\\\\end{gathered}

Similar questions