Math, asked by gurever57, 9 months ago

please solve this problems and send me the answers with solutions . solve all the Questions. please ​

Attachments:

Answers

Answered by amankumaraman11
2

We know,

  • Using the following identities, we can solve the problems vased on exponent & powers :

 \rm {a}^{m}  \times  {a}^{n}  =  {a}^{( m+n )}  \\  \rm {a}^{m}   \div   {a}^{n}  =  {a}^{( m - n )} \\  \rm {a}^{n}  \times  {b}^{n}  =   {(a \times b)}^{n}  \\  \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {a}^{0}  = 1 \\ \\ \\ \\

Now, Solving the Problems ::

11.] Evaluate :

 \rm{}(i) \:  \: \sf ( {6}^{0}  +  {15}^{0} ) \times ( {12}^{0}  + 5) \\  \sf \to \: (1 + 1) \times (1 +5 ) \\   \sf\to \: (2) \times (6)  \:  \:  \: =  \red{12} \\

 \rm(ii) \:  \: \sf  \frac{2 \times  {3}^{3} \times 64  }{81 \times  {4}^{2} }  \\  \\  \sf \to \:  \:  \frac{2 \times  {3}^{3} \times  {2}^{6}  }{ {3}^{4} \times  {( {2}^{2}) }^{2}  }   \: =  \frac{ {2}^{(1 + 6)}  \times   {3}^{3}  }{ {3}^{4}  \times  {2}^{4} }  \\  \\  \sf \to \frac{ {2}^{7}  \times  {3}^{3} }{ {3}^{4}  \times  {2}^{4} }   \:  \: =  {2}^{(7 - 4)}  \times  {3}^{(3 - 4)}  \\  \\  \sf \to {2}^{3}  \times  {3}^{ - 1}   \:  \: =  {2}^{3}  \times  \frac{1}{ {(3)}^{1} }  \\  \\ \sf  \to \frac{ {2}^{3} }{3}   \:   \:  \: \: =  \red{ \frac{8}{3} } \\

 \rm{} \: (iii) \:  \:   \sf\frac{ {10}^{5}  \times 125 \times  {3}^{5} }{ {5}^{7}  \times  {6}^{4} }  \\  \\  \sf \to \frac{ {(2 \times 5)}^{5}  \times  {5}^{3} \times  {3}^{5}  }{ {5}^{7} \times  {(2 \times 3)}^{4}  }  \\  \\   \sf\to \frac{ {2}^{5}  \times  {5}^{5}  \times  {5}^{3}  \times  {3}^{5} }{ {5}^{7}  \times  {2}^{4}  \times  {3}^{4} }  \\  \\  \sf \to \frac{ {2}^{5}  \times  {5}^{(5 + 3)} \times  {3}^{5}  }{{5}^{7}  \times  {2}^{4}  \times  {3}^{4}}  \: =   \frac{ {2}^{5}  \times  {5}^{8}  \times  {3}^{5} }{  {5}^{7} \times  {2}^{4}    \times  {3}^{4} } \\  \\ \sf \to   {2}^{(5 - 4)}  \times  {5}^{(8 - 7)}  \times  {3}^{(5 - 4)}  \\  \sf \to \:  {2}^{1}  \times  {5}^{1}  \times  {3}^{1}  \:  \:  = 2 \times 5 \times 3 =  \red{30} \\ \\ \\ \\

12.] Simplify :

 \sf(i) \:  \:  {2}^{55}  \times  {2}^{60}  -  {2}^{97}  \times  {2}^{18}  \\  \sf \to \:  {2}^{(55 + 60)}  -  {2}^{(97  +  18)}  \\  \sf \to \:  {2}^{115}  -  {2}^{115}  =  \red0

 \sf(ii) \:  \:  {2}^{3}  \times  {a}^{3}   \times  {5a}^{4}  \\  \sf \to {(2 \times a)}^{3}  \times  {5a}^{ 4 }  \\  \sf \to {(2a)}^{3}  \times  {5a}^{4}  \\  \sf \to   \: {8a}^{3}  \times  {5a}^{4}  = (8 \times5 ) {a}^{(3 + 4)}  \\  \sf \to \:  {40a}^{7}  \\

 \sf (iii) \:  \:  \frac{ {3}^{n}  +  {3}^{n + 1} }{ {3}^{n +   1} -  {3}^{n}  }  \\  \\  \sf \to    \frac{ {3}^{n}  +  {3}^{n} \times  {3}^{1}  }{{3}^{n} \times  {3}^{1} -  {3}^{n} }  \\  \\  \sf \to  \frac{ {3}^{n} (1 +  {3}^{1} )}{ {3}^{n} ( {3}^{1}  - 1)}  =  \frac{ {3}^{n} (1 + 3)}{ {3}^{n} (3 - 1)}  \\  \\  \sf \to \frac{  \cancel{{3}^{n}}(4) }{ \cancel{{3}^{n} }(2)}   \:  \: =  \frac{4}{2}  \:  \:  \:  =  \red2

Answered by ravikumar952394
2

Answer:

hope this answers will help u.

Attachments:
Similar questions