Math, asked by ritikaverenkar, 9 months ago

Please solve this . Prove the identity . Don’t spam

Attachments:

Answers

Answered by Sudhir1188
8

ANSWER:

GIVEN:

   \sqrt{sec {}^{2} \theta  + cosec {}^{2} \theta }

TO PROVE:

   \implies \sqrt{sec {}^{2} \theta  + cosec {}^{2} \theta } = tan \theta + cot \theta

FORMULA USED:

  • 1+tan²Ø = Sec²Ø
  • 1+cot²Ø = Cosec²Ø

SOLUTION:

   = \sqrt{sec {}^{2} \theta  + cosec {}^{2} \theta }      \\using \: the \: formula   \\  =  \sqrt{1 + tan {}^{2} \theta + 1 + cot {}^{2}  \theta }  \\  =  \sqrt{tan {}^{2} \theta + cot {}^{2}  \theta + 2 } \\   we \: know \: that \: (tan \theta \:  \times  \cot \theta \:  = 1) \\   =  \sqrt{tan {}^{2} \theta + cot {}^{2}  \theta + 2 \times tan \theta \times  \cot \theta }  \\  =  \sqrt{(tan \theta + cot \theta) {}^{2} }  \\  = tan \theta \:  +  \cot \theta

LHS = RHS

PROVED:

NOTE:

Some important formulas:

(a+b)² = a²+b²+2ab

(a-b)² = a²+b²-2ab

(a+b)(a-b) = a²-b²

(a+b)³ = a³+b³+3ab(a+b)

Answered by saharounak093
1

Answer:

Step-by-step explanation: L.H.S.

√(sec²theta+cosec²theta)

√(1/cos²theta+1/sin²theta)

√(sin²theta+cos²theta/sin²thetacos²theta)

√(1/sin²thetacos²theta)

1/sintheta costheta

R.H.S.

tan theta+cot theta

sin theta/cos theta+cos theta/sin theta

(cos²theta+sin²theta)/sin theta cos theta

1/sin theta cos theta

Proved

Plz mark me as brainliest

Similar questions