Math, asked by TANU81, 1 year ago

Please solve this !!Q-2)

Attachments:

iHelper: Hope it helped +Tanu81

Answers

Answered by iHelper
12
Hello!

• AB ⊥ BC and DM ⊥ BC
\textbf{AB\: || \:DM}

Similarly,

• CB ⊥ AB and DN ⊥ AB
\textbf{ CB\: || \:DN}

Hence, Quadrilateral BMDN is a rectangle.

\textbf{ BM = ND}

♦ In ∆ \textbf{BMD} :

∠1 + ∠BMD + ∠2 = 180°

⇒ ∠1 + 90° + ∠2 = 180°

⇒ ∠1 + ∠2 = 90°

Similarly,

♦ In ∆ \textbf{DMC} :

∠3 + ∠4 = 90°

∠2 + ∠3 = 90°

Now,

∠1 + ∠2 = 90° = ∠2 + ∠3 = 90°

⇒ ∠1 + ∠2 = ∠2 + ∠3 ⇒ \boxed{\angle \sf 1 = \angle \sf 3}

Also,

∠3 + ∠4 = 90° = ∠2 + ∠3 = 90°

⇒ ∠3 + ∠4 = ∠2 + ∠3 ⇒ \boxed{\angle \sf 2 = \angle \sf 4}

Then,

In ∆ BMD & Δ DMC

• ∠1 = ∠3
• ∠2 = ∠4

Δ BMD ~ Δ DMC ---( AA Similarity Criterion )

\dfrac{\sf BM}{\sf DM} = \dfrac{\sf MD}{\sf MC}

\dfrac{\sf DN}{\sf DM} = \dfrac{\sf MD}{\sf MC}

\boxed{\sf DM^{2} = DN\: x\:MC}

Similarly,

Δ BND ~ Δ DNA ---( AA Similarity Criterion )

\dfrac{\sf BN}{\sf DN} = \dfrac{\sf ND}{\sf NA}

\dfrac{\sf DM}{\sf DN} = \dfrac{\sf DN}{\sf AN}

\boxed{\sf DN^{2} = DM\: x\:AN}

Cheers!

TANU81: Thanks a lot :)
Answered by rahman786khalilu
3

hope it helps you .....................

..

Attachments:
Similar questions