Math, asked by MissGulabo, 2 months ago

Please solve this quadratic equation.
Class X Quadratic Equations

Thank you in advance! <3​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:3\bigg(\dfrac{3x - 1}{2x + 3} \bigg) - 2\bigg(\dfrac{2x + 3}{3x - 1} \bigg) = 5

Let assume that

 \red{\rm :\longmapsto\:\dfrac{3x - 1}{2x + 3} = y}

So, given equation can be rewritten as

\rm :\longmapsto\:3y - \dfrac{2}{y}  = 5

\rm :\longmapsto\:\dfrac{ {3y}^{2}  - 2}{y}  = 5

\rm :\longmapsto\: {3y}^{2} - 2 = 5y

\rm :\longmapsto\: {3y}^{2} - 5y - 2 =

\rm :\longmapsto\: {3y}^{2} - 6y + y - 2 =

\rm :\longmapsto\:3y(y - 2) + 1(y - 2) = 0

\rm :\longmapsto\:(y - 2)(3y + 1) = 0

\rm :\longmapsto\:y - 2 = 0 \:  \:  \: or \:  \:  \: 3y + 1 = 0

\bf\implies \:y = 2 \:  \:  \: or \:  \:  \: y =  - \dfrac{1}{3}

Now, Consider

\rm :\longmapsto\:y = 2

 \red{\rm :\longmapsto\:\dfrac{3x - 1}{2x + 3} = 2}

\rm :\longmapsto\:3x - 1 = 4x + 6

\rm :\longmapsto\:3x - 4x = 1 + 6

\rm :\longmapsto\: - x = 7

\bf\implies \:x =  - 7

Now, Consider

\rm :\longmapsto\:y =  - \dfrac{1}{3}

 \red{\rm :\longmapsto\:\dfrac{3x - 1}{2x + 3} =  -  \dfrac{1}{3} }

\rm :\longmapsto\:9x - 3 =  - 2x - 3

\rm :\longmapsto\:9x + 2x =  0

\rm :\longmapsto\:11x =  0

\bf\implies \:x = 0

Question

If given equation is like

\rm :\longmapsto\:3\bigg(\dfrac{3x - 1}{2x + 3} \bigg)  + 2\bigg(\dfrac{2x + 3}{3x - 1} \bigg) = 5

Let assume that

 \red{\rm :\longmapsto\:\dfrac{3x - 1}{2x + 3} = y}

The given equation can be rewritten as

\rm :\longmapsto\:3y + \dfrac{2}{y}  = 5

\rm :\longmapsto\:\dfrac{ {3y}^{2}  + 2}{y}  = 5

\rm :\longmapsto\: {3y}^{2}  +  2 = 5y

\rm :\longmapsto\: {3y}^{2} - 5y  +  2  = 0

\rm :\longmapsto\: {3y}^{2} - 3y - 2y  +  2  = 0

\rm :\longmapsto\:3y(y - 1) - 2(y - 1) = 0

\rm :\longmapsto\:(y - 1)(3y - 2) = 0

\rm :\longmapsto\:y - 1 = 0 \:  \:  \: or \:  \:  \: 3y  - 2 = 0

\bf\implies \:y = 1 \:  \:  \: or \:  \:  \: y =  \dfrac{2}{3}

Consider,

\rm :\longmapsto\:y = 1

 \red{\rm :\longmapsto\:\dfrac{3x - 1}{2x + 3} = 1}

\rm :\longmapsto\:3x - 1 = 2x + 3

\rm :\longmapsto\:3x - 2x = 1 + 3

\bf :\longmapsto\:x = 4

Consider,

\rm :\longmapsto\:y =   \dfrac{2}{3}

 \red{\rm :\longmapsto\:\dfrac{3x - 1}{2x + 3} = \dfrac{2}{3} }

\rm :\longmapsto\:9x - 3 = 4x + 6

\rm :\longmapsto\:9x - 4x= 3 + 6

\rm :\longmapsto\:5x= 9

\bf\implies \:x = \dfrac{9}{5}

Answered by nagarchana31
1
Here is your answer
Hope it helps you

And then solve it!!
Attachments:
Similar questions