Math, asked by anshu2342, 1 year ago

Please solve this question​

Attachments:

Answers

Answered by Anonymous
9

\bf{\large{\underline{\underline{Question:-}}}}

If \sf{x = \dfrac{1}{x - 5}} , find the value of \sf{x^3 + \dfrac{1}{x^3}} .

\bf{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{{x}^{3}  -   \dfrac{1}{ {x}^{3}} = 140}}

\bf{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x = \dfrac{1}{x - 5}}

To find :- \sf{x^3 + \dfrac{1}{x^3}}

Solution :-

\tt{x = \dfrac{1}{x - 5}}

\tt{\implies{ \dfrac{1}{x} = x - 5}}

\tt{\implies{0 = x - 5 - \dfrac{1}{x} }}

\tt{\implies{5 = x - \dfrac{1}{x} }}

\tt{\implies{x - \dfrac{1}{x} = 5}}

By cubing on both the sides :-

\tt{\implies{{(x - \dfrac{1}{x})}^3 = 5^3}}

We know that (x - y)³ = x³ - y³ - 3xy(x - y)

Here x = x, y = 1/x

By substituting the values in the identity we have,

\tt{\implies{{x}^{3}  -   \dfrac{1}{ {x}^{3}} - 3(x)( \dfrac{1}{x} )(x -  \dfrac{1}{x}) = 125}}

\tt{\implies{{x}^{3}  -   \dfrac{1}{ {x}^{3}} - 3(x -  \dfrac{1}{x}) = 125}}

\tt{\implies{{x}^{3}  -   \dfrac{1}{ {x}^{3}} - 3(5) = 125}}

[Since x - 1/x = 5]

\tt{\implies{{x}^{3}  -   \dfrac{1}{ {x}^{3}} - 15 = 125}}

\tt{\implies{{x}^{3}  -   \dfrac{1}{ {x}^{3}} = 125 + 15}}

\tt{\implies{{x}^{3}  -   \dfrac{1}{ {x}^{3}} = 140}}

\boxed{\bf{{x}^{3}  -   \dfrac{1}{ {x}^{3}} = 140}}

\bf{\large{\underline{\underline{Identity\:Used:-}}}}

(x - y)³ = x³ - y³ - 3xy(x - y)

\bf{\large{\underline{\underline{Some\:Important\:Identities:-}}}}

[1] (x + y)² = x² + y² + 2xy

[2] (x - y)² = x² + y² - 2xy

[3] (x + y)(x - y) = x² - y²

[4] (x + a)(x + b) = x² + (a + b)x + ab

Similar questions