Math, asked by varad54, 11 months ago

Please solve this question​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

By angle bisector theorem:

 \frac{AP}{PQ}  =  \frac{AB}{BQ}....(1) \\  \frac{AP}{PQ}  =  \frac{AC}{CQ}....(2) \\ from \: (1) \: and \: (2) \\  \frac{AP}{PQ}  =  \frac{AB}{BQ} =  \frac{AC}{CQ} \\ let \: \frac{AP}{PQ}  = \frac{AB}{BQ} =  \frac{AC}{CQ} = k \\  \therefore k \:  = \frac{AB}{BQ} =  \frac{AC}{CQ}  \:  \\ \therefore k \:  = \:  \frac{AB +AC }{BQ +CQ } ( by \: theorem \: on \: equal \: ratios) \\ \therefore k \:  = \:  \frac{AB +AC }{BC}  \\  \therefore \: \frac{AP}{PQ}  =\frac{AB +AC }{BC} \\ thus \: proved \\

Similar questions